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Abstract. High Damping Rubber Bearings (HDRBs) are widely used in seismic isolation of
structures, and their force-deformation constitutive behavior controls the lateral structural re-
sponse during an earthquake. However, given the many components and steps involved in the
preparation of the rubber compound and the manufacturing process itself, the HDRB force-
deformation behavior presents significant variability with respect to nominal design values.
Consequently, this paper proposes a framework for parametric probabilistic modeling of the
uncertain behavior of these devices. For the validation of this framework, a recently proposed
force-deformation phenomenologically based numerical model is considered. Calibration of
the HDRB model is based on experimental results of 125 devices and uses the Covariance Ma-
trix Adaptative Evolution Strategy (CMA-ES) algorithm to fit the model parameters. Since the
structural response is controlled by the isolator behavior, this parametric probabilistic model
provides an efficient tool to propagate uncertainty from the isolation devices to the final dy-
namic response of the structure. This framework can also be used to evaluate the validity of the
approximate code methodology of the upper and lower bound isolator property design limits,
which are applied for all isolators simultaneously.
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1 INTRODUCTION

The force-deformation constitutive relationship of seismic isolation devices dominates the
dynamic response of isolated structures. Therefore, an accurate characterization of isolator be-
havior is critical in evaluating seismic performance. High Damping Rubber Bearings (HDRBs)
are probably one of the most used isolation devices in practice; however, modeling their behav-
ior still present challenges due to their high non-linearity. The characterization of HDRB behav-
ior also includes the uncertainty in the force-deformation response of devices with equal nomi-
nal properties, as this uncertainty affects the response of structures significantly. The source of
this uncertainty arises from the intrinsic variability of the rheological properties of the rubber
compound, which increases with the manufacturing process since it is extremely sensitive to
temperature, pressure, and rubber curing time [1]. Additionally, the misalignment of the steel
shims within the device also influences the lateral and vertical behavior [2].

Design standards account for this uncertainty in HDRBs by means of two approaches: (i)
using modification factors to establish lower and upper bounds [3]; or (ii) defining the most
unfavorable set of parameters [4, 5]. It is worth noting that the former includes effects such
as scragging within the uncertainty factor, while the latter relies on professional judgment to
define parameter values. In the literature, uncertainty has been commonly quantified in terms of
dissipated energy capacity and effective stiffness [6, 7], which is a reasonable assumption since
these two parameters are the most used in the design process.

During last two decades, several numerical models have been proposed to simulate the be-
havior of HDRBs, most of them are phenomenological models which try to include several
phenomena, such as strain-rate dependency [8, 9], stress softening [10, 11], and load direc-
tion dependency [12, 13]. Some of these characteristics of the HDRB behavior, such as the
stiffening observed at large deformations, has significant influence in the dynamic response of
seismically isolated structures [14]. These models usually require a large number of parameters
to define the force-deformation response. The use of these models in quantifying uncertainty
propagation from HDRB properties to the dynamic response of seismically isolated structures
is not found in the current literature. This is in part because of the limited availability of exper-
imental data, which makes difficult to generate parametric probabilistic models. This research
work proposes a useful tool to encourage the use of sophisticated phenomenological models
in uncertainty quantification of seismically isolated structures that use HDRBs. A data aug-
mentation technique is presented to overcome data limitations, which is also validated. This
data augmentation technique can be classified as oversampling, and takes advantage of the non
uniqueness of optimal parameters for phenomenological based numerical models.

The aim of this paper is twofold: (i) to present a data augmentation technique for phe-
nomenological based numerical models; and (ii) to propose a framework for parametric prob-
abilistic modeling of HDRBs to consider random uncertainty. In Section 2 the manuscript
describes the case-study and the experimental data; Section 3 outlines the generation of the
parametric probabilistic model; Section 4 shows the results and comparisons between the artifi-
cial devices generated using the proposed model and the experimental database; and Section 5
finally presents conclusions of this study.

2 EXPERIMENTAL DATA AND MODELING ASSUMPTIONS

The nominal device used for this research is an annular-shaped HDRB, which outer (Do) and
inner diameter (Di) are 70 and 10 cm, respectively. The bearing consists of 34 rubber layers
6 mm thick, 33 steel shims 3 mm thick, and upper and bottom steel plates 30 mm thick. The
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total height of the device is 363 mm, while the total height of elastomeric material (Hr) is 204
mm. The shape factor (S), computed as the ratio of the loaded and the free to deform area, is
25. The nominal shear modulus (G) of the elastomeric material is 5 kgf/cm2. The considered
device was used in the seismic isolation system of an actual hospital in Santiago, Chile. Figure
1a sketches the HDRB used in this work.
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Figure 1: HDRB: a) simplified sketch of the device; b) deformation history of tests; and c) force-deformation
constitutive behavior.

2.1 Experimental database

The experimental data used in this research includes the results of all devices ready for in-
stallation as part of the isolation system after quality control testing, which accounts for 125
HDRBs. The load pattern of the experimental tests was applied in two phases: phase 1 con-
sidered a compressive load of 345 tonf, resulting in a compressive stress of 91.51 kgf/cm2; and
phase 2 considered a cyclic lateral deformation history including four different strain levels (25,
50, 100, and 123 %) with seven full cycles at each strain level at a fixed frequency of about
0.08Hz. Figures 1b and 1c show the imposed deformation history and shear force-deformation
experimental response of a device randomly selected from the database, respectively.

2.2 Numerical model for HDRBs

A recently proposed force-deformation model [13] is used in this research for simulating the
shear response of the devices. The numerical shear model includes phenomena such as stress
softening with unilateral effect (anisotropy induced by degradation), temporary hardening, and
stiffening at large deformations. The mathematical formulation is based on a decomposition of
the force-deformation constitutive relationship into a hyperelastic and a dissipative component
working in parallel thus, F = Fh +Fd, where F , Fh, and Fd, are the total shear force, the shear
force of the hyperelastic, and the shear force of the dissipative component, respectively. This
model fits qualitatively and quantitatively well the experimental results of HDRBs; a summary
of the mathematical formulation of the shear model is presented in Table 1, and the complete
formulation can be found elsewhere [13].

The shear model requires the calibration of 17 parameters (Table 1): three for the hyperelastic
component (a10, a20, a30), four for the dissipative component (κ, fy, β, η), eight for the stress
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Table 1: Constitutive equations of the shear model [13].

Hyperelastic component Dissipative component
Fh = Ks1Kma10γ −Ks2a20γ

3 +Ks3a30γ
5 Fd = fyz

Scragging Evolution law

Ks1 = exp(−C1γ
p1
s ) ż = k

fy
γ̇ [1− |z|ηR]

Ks2 = Ks1 exp(−C2γ
p2
s ) R = βsign(γ̇z) + α− Φsign(γ̇) (sign(z) + sign(γ̇))

Ks3 = Ks1 exp(−C3γ
p3
s ) Temporary hardening

γ±
s = min

(
γ±
hp, γ

±
s(trial)

)
Φ = Φmax

[
1− exp

(
−PΦ

∣∣∣γpl

γy

∣∣∣)]
γ̇±
s(trial) =

{
|γ̇|
2 , for loading
4 |γ̇|, for unloading

Mullins effect
Km = exp(−Cmγpm

m )

γ̇±
m =

{
0, for loading
|γ̇|, for unloading

softening (C1, p1, C2, p2, C3, p3, Cm, pm), and two for defining the temporary hardening (Φmax,
PΦ).

The coupling between axial and shear response was considered using the two spring model
[15]. However, the two parameters of this model (stiffness of the two springs) were considered
constant and calculated according to the traditional theoretical formulation [16], they do not
participate in the development of the parametric probabilistic model.

2.3 Parameter calibration

The 17 parameter values were estimated to match the data obtained from experimental results
of HDRBs. This parameter calibration was performed using the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [17]. This is a stochastic optimization algorithm that uses pre-
vious iteration results to determine the evolution path of descendants. For this process, we
considered 100 steps with 20 descendants in each step. The optimization objective was to mini-
mize the mean squared error (Ψ) between the experimentally measured and the model simulated
forces for each sampled deformation, i.e,

Minimize
{
Ψ =

1

n

n∑
i=1

(
f t
i − fm

i

)2}
(1)

where n is the number of sampled deformations, and f t
i and fm

i are the experimental and model
forces at the i-th sampled deformation, respectively.

Since the model parameters for simulating the shear response of HDRBs are related in a
highly non-linear way, the optimal set of values for matching the experimental response of each
device is not unique [18]. The set of parameters resulting from the optimization depends on the
initialization parameter of the algorithm that generates the descendants within the optimization
algorithm. This is because the descendants in the first step of the optimization process define
a path for the parameters (gradient). Thus, different descendants give different paths, and as a
consequence, the optimization algorithm converges to a different set of values.

Table 2 shows the resulting numerical values of two different optimization processes and
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Table 2: Parameter values for two different optimization processes.

Case Ψ a10 a20 a30 C1 p1 C2 p2 C3 p3
Set 1 0.2297 74.53 89.25 266.67 1.19 0.27 35.90 0.29 3.08 0.32
Set 2 0.2270 56.05 55.79 185.90 0.85 0.40 34.81 0.48 3.07 0.23

Case Cm pm κ fy β η Φmax PΦ

Set 1 0.078 0.34 157.42 2.05 0.90 0.32 0.20 0.0033
Set 2 0.097 0.35 173.87 1.80 0.90 0.30 0.15 0.0049

the value of Ψ in each case. Although the parameter values show significant differences, the
Ψ values are very similar. Figure 2 presents the simulation results considering both sets of
parameter values presented in Table 2, and the differences between both curves are almost
negligible. We are currently thinking of ways of constraining better this optimization process,
so the solution also maintains the desirable properties of models used typically in isolation
design.
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Figure 2: Simulated response considering two sets of parameter values: a) Set 1, and b) Set 2 (Table 2).

3 PARAMETRIC PROBABILISTIC MODELING

A parametric probabilistic model considers the definition of the Probability Density Func-
tions (PDFs) for each unknown parameter, the estimation of the PDFs parameters, and the
estimation of the correlations between the unknown parameters. All this depends on the data,
which sometimes is very limited in practice, affecting the quality of the probabilistic model due
to undesired biases. In fields such as image processing, a common practice to overcome this lim-
itation is to augment the database by manipulating the existing samples [20]. Consequently, this
section presents a data augmentation technique for phenomenological-based numerical models.

3.1 Data augmentation

The data augmentation technique takes advantage of the non-uniqueness of the optimal set of
parameter values for matching an experimental test response [18]. With the aim to validate this
technique, we separate from the total sample a subset of 13 devices, i.e., 10% of the complete
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dataset.
We start the process with the parameter calibration described in the previous section for

the complete database of experimental test results. These results will be referred hereafter
as the control data (CD). Then, the model calibration process is repeated ten times to match
only the experimental results for the subset of 13 devices. Each process uses a different set
of initialization parameter values for the optimization algorithm; the results of each calibration
process will be denoted as a batch. Each batch includes 13 sets of parameter values for the shear
model of the 13 HDRBs. Since we repeat the process ten times, we get ten batches. Given the
non-uniqueness of the optimal parameters, each optimization process converges to different sets
of parameters for each device, and hence, the corresponding sets of parameters for each device
in two different batches are different.

3.2 Probabilistic models

The probabilistic models are generated considering the data corresponding to the 13 HDRBs
of the subset, and the effectiveness of the data augmentation technique is verified selecting
three data sizes (number of batches) and comparing that with the CD. The first model (Model 1)
considers the data of just one calibration process (DM1), batch 1; the second model (Model 2)
considers the data of three calibration processes (DM2), batches 1, 2 and 3; and the third model
(Model 3) considers data of all ten calibration processes (DM3), batches 1 through 10. Thus,
DM1 has an equal number of samples as HDRBs in the subset (13); DM2 has a number of
samples equal to three times the number of HDRBs in the subset (39); and DM3 has a number
of samples equal to ten times the number of HDRBs in the subset (130).
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Figure 3: Relative frequency histograms for variable a1: a) DM1, b) DM2, c) DM3, and d) CD.

Figure 3 shows an example of the relative frequency histograms of one model parameter, a10.
It is apparent that the DM1 dataset is not enough for capturing the distribution of the variable
and presents a large bias. DM2 represents better the distribution of the variable, and the rep-
resentation improves with DM3. Indeed, the histogram of DM3 is quite similar to that of CD.
Because all parameter values need to be positive and considering as reference the DM3 dataset
histograms, we chose log-normal distributions for essentially all model parameters, except for
parameters β and η, which show low variability for the available data and, hence, are consid-
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ered constant hereafter, with values equal to 0.90 and 0.30, respectively (Table 1, dissipative
component).

Table 3 shows the mean values µ, and the coefficients of variation V , for all parameters
considering the DM1, DM2, DM3, and CD datasets. Although there is no clear trend for all
cases, it seems that increasing the number of samples with the data augmentation technique
improves the estimation of the mean values, using CD as the target. Examples of this are the
parameters a10 and κ. As it should, the values of the coefficient of variation V for the CD tend
to be larger than the corresponding values for the other three cases.

Table 3: Mean values µ, and the coefficients of variation V , for parameters of the shear model considering DM1,
DM2, DM3, and CD.

DM1 DM2 DM3 CD
Parameter µ V µ V µ V µ V
a10 73.191 0.1437 70.800 0.1252 69.964 0.1193 65.985 0.1515
a20 77.916 0.1792 76.641 0.1802 75.779 0.1801 78.369 0.2150
a30 238.41 0.1640 232.60 0.1580 229.71 0.1787 229.77 0.2010
C1 1.1171 0.1034 1.0907 0.0958 1.0809 0.1016 1.0779 0.1467
p1 0.3121 0.1998 0.3219 0.1660 0.3251 0.1448 0.3036 0.1700
C2 26.328 0.1582 28.223 0.1520 27.480 0.1779 28.191 0.1894
p2 0.3419 0.1320 0.3602 0.2130 0.3708 0.1967 0.3421 0.2163
C3 3.3680 0.0691 3.3793 0.0675 3.3703 0.0763 3.4909 0.0896
p3 0.2511 0.2073 0.2434 0.1930 0.2461 0.1859 0.2378 0.1928
Cm 0.0913 0.2091 0.0920 0.1987 0.0901 0.1982 0.0873 0.2313
pm 0.3145 0.1768 0.3082 0.1682 0.3134 0.1548 0.3056 0.1696
κ 150.25 0.1843 141.89 0.1569 141.86 0.1340 131.87 0.1453
fy 2.9149 0.0792 2.9423 0.0874 2.9425 0.1004 2.7026 0.1438
Φmax 0.1756 0.0773 0.1780 0.1032 0.1785 0.1310 0.1826 0.1696
PΦ 0.0045 0.1465 0.0047 0.1713 0.0047 0.1837 0.0048 0.1752

Since log-normal distributions describe the values of the parameters, the mean of the natural
logarithm of an arbitrary parameter λX , and its standard deviation ϵX , can be determined from
the values presented in Table 3 using the following expressions [19],

ϵ2X = ln
(
1 + V 2

X

)
(2)

λX = ln (µX)−
1

2
ϵ2X (3)

where X denotes the selected parameter.
Figure 4 shows the Pearson correlation matrices of the natural logarithm of the 17− 2 = 15

(fixed) parameters for DM1, DM2, DM3, and CD. For this table, the natural logarithm of all
parameter values was computed, and then, the correlation matrix was determined. For the DM1
dataset, there are several parameters with large values of cross correlation. The number of
parameters with large cross correlation values decreases for DM2 and DM3. In the comparison
with the CD, it is apparent that the correlation matrix for DM3 is the closest, demonstrating that
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1.00 0.15 -0.07 0.75 -0.39 -0.35 -0.00 -0.19 -0.20 0.28 -0.10 -0.01 0.27 0.08 0.12

0.15 1.00 0.13 0.04 -0.28 0.50 -0.25 0.25 -0.16 0.38 0.21 -0.20 -0.05 0.03 0.20

-0.07 0.13 1.00 0.23 -0.04 0.64 -0.09 0.56 -0.02 -0.05 -0.29 0.01 -0.30 0.13 -0.42

0.75 0.04 0.23 1.00 -0.23 -0.07 0.07 -0.32 -0.14 -0.12 -0.42 0.28 0.07 -0.24 -0.14

-0.39 -0.28 -0.04 -0.23 1.00 0.21 0.10 -0.45 0.25 -0.24 -0.64 0.58 0.65 0.00 -0.45

-0.35 0.50 0.64 -0.07 0.21 1.00 -0.22 0.21 0.17 -0.25 -0.18 0.24 -0.10 0.12 -0.14

-0.00 -0.25 -0.09 0.07 0.10 -0.22 1.00 -0.27 0.32 -0.02 -0.14 0.30 0.20 -0.27 -0.29

-0.19 0.25 0.56 -0.32 -0.45 0.21 -0.27 1.00 -0.30 0.33 0.41 -0.64 -0.57 0.32 -0.07

-0.20 -0.16 -0.02 -0.14 0.25 0.17 0.32 -0.30 1.00 -0.27 -0.36 0.19 0.19 0.10 0.11

0.28 0.38 -0.05 -0.12 -0.24 -0.25 -0.02 0.33 -0.27 1.00 0.24 -0.33 0.03 0.21 -0.03

-0.10 0.21 -0.29 -0.42 -0.64 -0.18 -0.14 0.41 -0.36 0.24 1.00 -0.67 -0.49 0.00 0.65

-0.01 -0.20 0.01 0.28 0.58 0.24 0.30 -0.64 0.19 -0.33 -0.67 1.00 0.52 -0.19 -0.52

0.27 -0.05 -0.30 0.07 0.65 -0.10 0.20 -0.57 0.19 0.03 -0.49 0.52 1.00 -0.10 -0.12

0.08 0.03 0.13 -0.24 0.00 0.12 -0.27 0.32 0.10 0.21 0.00 -0.19 -0.10 1.00 -0.20

0.12 0.20 -0.42 -0.14 -0.45 -0.14 -0.29 -0.07 0.11 -0.03 0.65 -0.52 -0.12 -0.20 1.00

Figure 4: Pearson correlation matrices (Cr) for a) DM1, b) DM2, c) DM3, and d) CD.

the augmentation data technique avoids spurious large correlation values as result of the small
number of samples.

4 RESULTS

The data of Table 3 and Figure 4 was used in the generation of the sets of parameters of
artificial (synthetic) devices. A total of 125 sets of parameters was simulated for each case
(DM1, DM2, and DM3), which is equal to the number of HDRBs of the complete dataset.
This simulation was performed using the procedure presented in [19]. For the generation of the
cross correlated parameters, the calculation of the eigenvalues of the covariance matrix COV
is required, which can be computed as

COV (i,j) = ϵiCr(i,j)ϵj (4)

where ϵi is the standard deviation of the i-th parameter computed using Eq. (2), and Cr is the
correlation matrix (Figure 4).

Using the information of DM1, the resulting eigenvalues of the covariance matrix are com-
plex numbers, and then, it is not possible to generate its corresponding sets of parameters. The
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Figure 5: Comparison of artificial devices generated with a) Model 2, and b) Model 3, and c) experimental results.

response of the simulated devices using DM2 and DM3, and the experimental results of the
125 HDRBs, are plotted in Figure 5. Both cases show reasonably good agreement with the
experimental results of the force-deformation constitutive relationships. However, numerically,
the artificial devices generated considering DM3 present parameters more consistent with the
experimental results of large databases in terms of mean values and correlations (Table 3 and
Figure 4, respectively).
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Figure 6: Relative frequency histograms of dissipated energy Edis and effective stiffness Keff computed at the
third cycle of the larger shear strain for the two models and the experimental data.

Figure 6 shows the relative frequency histograms of dissipated energy (Edis) and effective
stiffness (Keff ) during the third cycle of the larger shear strain amplitude (γ = 123%). This
cycle was plotted because it represents the stable behavior of the device (after scragging). Both
numerical models tend to slightly overestimate the dissipated energy and effective stiffness of
the experimental test results, which is a consequence of bias in the selected subset used to
calibrate the parametric probabilistic model, but there are negligible differences between both
models.

5 SUMMARY AND CONCLUSIONS

This manuscript presents a framework for parametric probabilistic modeling of a phenomeno-
logical numerical model recently proposed for simulating the shear response of HDRBs. A data
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augmentation technique is proposed, which takes advantage of the non-uniqueness of the op-
timal parameters for this type of numerical models. The data augmentation technique can be
classified as oversampling, and is a good tool to overcome data limitation and reduce bias in
small size databases. The technique reduces spurious large correlation between model parame-
ters as a consequence of the limited number of experimental data. The parametric probabilistic
model simulates well the uncertainty of shear behavior of HDRBs with the same nominal prop-
erties. Although the probabilistic models were developed considering only the experimental
responses of 13 devices, the responses of the artificial devices generated with Model 2 (DM2)
and Model 3 (DM3) fit reasonably well with the complete dataset of 125 HDRBs. This prob-
abilistic model provides an efficient tool to characterize and propagate uncertainty from the
HDRBs to the final dynamic response of seismically isolated structures. This framework can
also be used to evaluate the validity of the approximate code methodology of the upper and
lower bound isolator property design limits [3]. Moreover, the framework is useful for studying
other topics such as accidental torsion in seismically isolated structures.
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