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A B S T R A C T

The dynamic behavior of isolated structures is strongly controlled by the force–deformation constitutive
behavior of the isolators. Among the different types of existing isolation devices, High Damping Rubber
Bearings (HDRBs) are commonly used in practice, which behavior is highly non-linear and difficult to model
analytically. Consequently, this article proposes a simple, but sufficiently accurate, mathematical model for
simulating the non-linear shear behavior of HDRBs under large deformations, and an estimation procedure
for its parameter values using the geometrical features and mechanical characteristics of the device. First,
we briefly describe the phenomena observed in the experimental test data, as well as other phenomena not
observed within the range of experimental deformations. Then, the mathematical formulation is presented,
which is based on the consideration of two components connected in parallel, a hyperelastic spring and a
dissipative component. The governing equation for the former is derived from the expanded formulation
of the Mooney–Rivlin model for isotropic hyperelastic materials, and the latter from a Bouc-Wen model
with hardening. A novel model is included to account for stiffness degradation, including scragging and
Mullins effects, which is developed from experimental data of 924 tested devices. The proposed model fits
well the experimental test results of HDRBs with different geometric features and material properties. Based
on the evolution laws for the different variables, the model can be successfully used in structural dynamic
analysis. To facilitate model calibration, a statistical estimation procedure is proposed to reduce the 17 force–
deformation constitutive model parameters of the isolator to 9 unknown parameters, which are computed
from the geometric features of the device and mechanical characteristics of the rubber material. This makes
the calibration of the force–deformation constitutive model parameters feasible. The estimation procedure
successfully predicts the behavior of an average device within a batch of HDRBs, showing good agreement
with two different experimental datasets.
. Introduction

Seismic isolation is an effective technique used worldwide to protect
quipment, structural and non-structural components of buildings in
igh seismicity zones. The technique has been used to retrofit historical
uildings [1–3], as well as in the design of new structures [4]; the
atter with a strong emphasis in essential facilities. During the last two
ecades, the use of seismic isolation has increasingly become more
opular due to its good performance during large earthquakes [5,6].
he geometric arrangement of isolators between the superstructure and
ubstructure seeks two principal goals: to uncouple as much as possible
he dynamics of the superstructure from the base motion by lengthen-
ng the periods of the isolated structure relative to the predominant
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frequencies of the expected ground motions, and to increase the inter-
nal damping in the system. Thus, the isolators work as a mechanical
filter, which reduces accelerations and relative deformations in the
superstructure.

Different isolation devices are available, such as elastomeric bear-
ings with and without a lead-core [7]; frictional pendulum systems in
different versions (double [8], triple [9], quintuple [10]); kinematic
self-centering devices [11,12], among others. Nowadays, elastomeric
or rubber bearings, including High Damping Rubber Bearings (HDRBs)
and lead-core rubber bearings, are probably the most widely used
isolation devices in practice. They are produced by intercalating and
vulcanizing rubber layers with thin steel shims. The behavior of the
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rubber, and consequently of the device, is highly non-linear, and it is
difficult to model analytically. Hence, this research focuses on HDRBs.

Several numerical studies have been developed to simulate the
force–deformation constitutive behavior of HDRBs [13–18]. In general,
as of today, the theory of continuum mechanics cannot accurately
reproduce the behavior of these devices, and since micro-models are
computationally very costly, phenomenological macro-models are pre-
ferred. Most of the macro-models decompose the force–deformation
response into a hyperelastic (or elastic) and a dissipative component to
reproduce the overall cyclic behavior of the devices. Additionally, the
stiffness degradation of the rubber is an important characteristic that
needs to be included in the models, which is a challenge. This has been
done previously by some authors [19–21], but the resulting models are
still very complex and cumbersome to calibrate with experimental data.

Currently, design standards [22–24] allow modeling HDRBs using
an equivalent linear elastic-viscous damping or a bi-linear hysteretic
model, depending on the analysis procedure. Both of these models
neglect phenomena that are inherent to the device, such as stiff-
ness degradation, temporary hardening, and the characteristics of the
unloading branch. ASCE7-16 [22] includes the effect of stiffness degra-
dation into an uncertainty factor reflected in the computation as an
upper and lower bound for the force–deformation constitutive relation-
ship of the device. Also, the behavior of isolated structures is studied
mostly by modeling the isolation devices by the approaches accepted
in the standards [25,26], and just sometimes using more sophisticated
models [27,28]. However, to the best of the authors knowledge, no
previous research includes all the effects of temporary hardening and
anisotropic stiffness degradation (scragging and Mullins effect), and P-𝛥
ffects. One important reason to avoid the use of more complex isolator
odels, which include all of those phenomena, is the difficulty of the
arameter calibration.

Isolated buildings are becoming taller, and improved isolator mod-
ling is necessary. Overall, the accuracy in predicting the dynamic be-
avior of a seismically isolated structure is strongly conditioned by the
esponse of the force–deformation constitutive behavior of the seismic
solators. Therefore, an efficient and simpler numerical model capable
f simulating the non-linear behavior of the isolators is proposed
erein. Consequently, this article aims to: (a) propose a sufficiently
ccurate numerical model for the shear behavior of HDRBs under large
trains which is numerically efficient and simpler to implement and;
b) predict its parameters from the geometric features of the devices
nd the mechanical properties of the elastomeric material. This article
s organized into five sections besides this introduction. Section 2
escribes the phenomenological behavior of the devices subjected to
xial load and lateral cyclic deformation histories, a brief description
f the most commonly observed phenomena is also presented. Section 3
resents the mathematical formulation of the proposed model, the
erivation of the equations, and the evolution laws for the strain-
ependent variables. Section 4 presents a statistical analysis to reduce
he number of variables by considering some parameters as constant,
hile searching for a relationship between the other model parameters,
echanical properties of the material, and geometric characteristics

f the device. Then, Section 5 depicts the results of the analytical
odel and compare these with experimental test results. The model

aptures the overall behavior of HDRBs, and the parameter estimation
odel for the force–deformation response of an average device in a

atch. Finally, Section 6 presents the numerical implementation of the
roposed model, and Section 7 discusses the relevant characteristics of
he model and presents the conclusions of this study.

. Phenomenological behavior of a HDRB

HDRBs are produced by intercalating and vulcanizing rubber layers
ith 2–3 mm thickness steel shims, as shown schematically in Fig. 1.
ince the in-plane stiffness of the steel shims is much larger than the
hear stiffness of the elastomer pads, it is customary to assume that the
2

Fig. 1. Sketch of the geometry and internal structure of an annular HDRB: (a) device;
(b) isolator assemblage and dimensions.

constitutive behavior of the rubber is the one that controls the overall
behavior of HDRBs. The steel shims restrict the free lateral expansion
of the rubber and thus increase the vertical stiffness of the steel-rubber
composite material. The rubber layers provide large shear flexibility
to the device. Consequently, the behavior of the device is highly non-
linear due primarily to the characteristics of the force–deformation
constitutive behavior of the rubber.

Therefore, since the behavior of seismically isolated structures is
strongly dependent on the force–deformation response of the isolators,
most design standards require testing prototype isolation devices to
validate the quality and robustness of their properties under loads and
displacements corresponding to the maximum considered earthquake.
Additionally, the consistency of the nominal and actual properties is
evaluated by testing all isolators used in construction. This testing
process has left a large amount of data in this research team, which is
helpful for studying in detail the behavior of devices under the expected
deformations. This database is composed mostly of the result of quality
control tests for several building projects. It includes experimental
results of over 2000 HDRBs that were carried out over a period of about
20 years [29]. Each device was tested under design load conditions,
which included a constant axial load and cyclic lateral deformation
pattern. The data includes devices with annular shapes with a wide
range of inner and outer diameters (𝐷𝑖 and 𝐷𝑜, respectively), elastomer
ayer thicknesses (𝑡𝑟), number of elastomer layers (𝑛), total height of

rubber (𝐻𝑟), and shear modulus of the elastomeric material (𝐺). In
order to study the general phenomenological behavior of HDRBs, a
subset of experimental results composed of 924 devices was selected
from the experimental dataset [29]. This selected subset considered: (i)
results with reduced instrumentation and measurement inconsistencies;
(ii) results of devices with different material and geometric properties,
such as shear modulus of rubber (𝐺), inner diameter (𝐷𝑖), outer diame-
ter (𝐷𝑜), thickness of the rubber layers (𝑡𝑟), total height of rubber (𝐻𝑟),
nd compressive load (𝑃 ); (iii) a minimum number of devices with the
ame nominal properties to account for the inherent uncertainty of the
evices; and (iv) the same number of testing strain levels (four) and
ycles per strain level (seven) for all tests. Thus, the subset contains
esults of 41 different device designs, all from the same manufacturer;
summary of the key parameters is presented in Table 1. Fig. 2 shows

he shear force–deformation response of a single HDRB, which contains
ome of the interesting characteristics of the devices; this example is
epresentative of the database. It is relevant to note that all tests have
een performed at a fixed frequency of about 0.08 Hz, and since time
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Fig. 2. Characteristics of the shear force–deformation response of an HDRB.
Table 1
Parameters summary of the subset of devices.

𝐷𝑖 𝐷𝑜 𝐷𝑖∕𝐷𝑜 𝑡𝑟 𝐻𝑟 𝑆a 𝐺 𝛾max
b 𝜎c

cm cm [–] cm cm [–] kgf/cm2 [–] [kgf/cm2]

Minimum 10.0 60.0 0.13 0.6 12.6 14.1 4.0 0.77 41.65
Maximum 15.0 100.0 0.25 0.8 25.9 29.2 8.0 1.65 205.99

aShape factor
[

𝑆 =
(

𝐷𝑜 −𝐷𝑖
)

∕4𝑡𝑟
]

.
bMaximum shear strain (𝛾 = 𝑑∕𝐻𝑟).
cAxial compressive stress

[

𝜎 = 𝑃∕𝐴
]

, where 𝐴 is the section area of the rubber
compound.

data is not available in the database, no rate-dependent effects will be
considered herein.

The experimental results shown in Fig. 2 correspond to a device
subjected to four different strain levels with seven full cycles at each
strain level. First, notice the stiffness degradation observed during
cycles at the same strain level. The first cycle at each strain level is
colored in blue, while the following cycles are colored in red. Most
of the stiffness degradation occurs during the first cycle, and though
it continues in the following cycles, the decrements in stiffness at the
same strain level are proportionally less at each consecutive cycle. In
the literature, this stiffness degradation is commonly denoted as Mullins
effect [30], which is defined as the softening of like-rubber materials at
elongations smaller than the previous deformations; a detailed explana-
tion of this phenomenon can be found elsewhere [30]. However, of is
customary to distinguish between stiffness degradation during the first
and subsequent cycles. This distinction is present in the literature [20]
and also used here. The term ‘‘scragging’’ is used to describe the long-
term degradation reflected in the stiffness degradation during the first
cycle. In contrast, the term "Mullins effect" refers to the short-term
degradation, or the stiffness degradation in all subsequent cycles. Also,
despite the significant stiffness degradation during loading at maximum
positive strain for all cycles, the unloading branches are essentially
identical. The curved zone located right after unloading is commonly
denoted as the transition zone (see Fig. 2). Another interesting feature
of these devices is the symmetric response in the positive and negative
deformation directions. Thus, the deformation history in the negative
direction has no memory of the response in the positive direction,
and vice versa. Therefore, since the stiffness degradation occurs at
each positive or negative deformation direction independently, this
phenomenon is labeled as unilateral (or anisotropic). Furthermore, the
force of the device at zero deformation differs for each strain level, be-
coming larger for target higher strain levels (Fig. 2). Other experimental
studies with decreasing strain levels have shown that this hardening
at zero deformation is temporary and decreases as the prior last strain
level decreases (e.g., [31]). The term temporary hardening will be used
herein to refer to this phenomenon. In this example, four different force
3

levels at zero deformation can be identified as corresponding to the
four different target maximum strain levels. However, this temporary
hardening cannot increase indefinitely with increasing strains, and so
its value is bounded. The evolution law of this temporary hardening
depends on the prior last maximum shear strain, while its bound is a
material property.

There are also other well-known characteristic phenomena of
HDRBs, such as cavitation [13,32,33] and vertical instability [34–36].
However, the experimental measurement of setup the database was not
aimed to evaluate these phenomena, and hence it cannot be considered
in the formulation of the proposed shear response of HDRB model.
However, in a sequel article, the authors incorporate these phenomena
in the extension of the proposed model to the case of multi-axial
behavior.

3. Mathematical formulation

A classical assumption about the behavior of HDRBs is that the
force–deformation response can be decomposed into a hyperelastic
component and a dissipative component. Consequently, the experimen-
tal response of each device of the subset presented in the previous
section was separated by cycles, and each cycle in its hyperelastic and
dissipative component. The hyperelastic component corresponds to the
backbone reference of the cycle (the curve throughout the center or
axe of the cycle), while the dissipative component is obtained by the
subtraction of the hyperelastic component from the total force (Fig. 3).
From the results of this decomposition, the following observation are
established: (i) it is apparent that only the hyperelastic component
presents stiffness degradation (Fig. 3b); (ii) the dissipative component
keeps its yield force in different cycles at the same maximum strain,
but increases the value of force as the maximum strain increases
(Fig. 3c); and (iii) stiffness degradation of the hyperelastic component
is produced sharply during the unloading branch (Fig. 3d). Thus, the
mathematical model proposed accounts for temporary hardening and
stiffness degradation; and the latter includes scragging and Mullins
effect. The unilateral (anisotropic) degradation effect noted in the
experimental tests, and the smooth unloading transition zone in the
force–deformation constitutive behavior are also considered in the
formulation.

Mathematically, the proposed model is based on the idealization
of two components working in parallel (see Fig. 3a), where the total
lateral force of the device is equal to the sum of the forces of the
hyperelastic and dissipative component, i.e.,

𝐹 = 𝐹ℎ + 𝐹𝑑 . (1)

In Eq. (1), 𝐹 , 𝐹ℎ, and 𝐹𝑑 , are the total shear force of the device, the
shear force of the hyperelastic spring, and the shear force of the dis-
sipative element, respectively. This decomposition enables us to study
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Fig. 3. Decomposition of (a) the elastomeric bearing response into (b) a hyperelastic and (c) a dissipative component; and, (d) idealization of the stiffness degradation and
issipated energy balance.
he phenomena by looking at each term separately. The derivation of
he equations that govern the response of both components is presented
ext.

.1. Hyperelastic component

The basic characteristics of the force–deformation constitutive be-
avior of rubber-like materials are usually modeled in continuum me-
hanics by the theory of hyperelasticity, considering also isotropy and
ncompressibility. A hyperelastic material is one in which stress can
e derived from a strain energy density function. The general form of
his strain energy function for an incompressible isotropic hyperelastic
aterial [37] is
∗ = 𝑊 (𝐼1, 𝐼2) − 𝑐0(𝐽 − 1), (2)

here 𝐼1, and 𝐼2 are the principal strain invariants of the left Cauchy–
reen deformation tensor 𝑩, defined as 𝑩 = 𝑭𝑭 𝑇 , where 𝑭 is the
eformation gradient tensor; 𝑐0 is an indeterminate Lagrangian multi-
lier, identified as a hydrostatic pressure; and 𝐽 = det(𝑭 ) = 1 represents
he incompressibility constraint. The strain invariants are defined as

1 = tr(𝑩), (3a)

2 =
1
2
[

tr(𝑩)2 − tr
(

𝑩2)] , (3b)

where tr(∙) and det(∙) are the trace and determinant of ∙, respectively.
The constitutive equation for the first Piola-Kirchhoff stress tensor

𝑷 is defined by differentiating Eq. (2) with respect to the deformation
gradient tensor 𝑭 , and can be expressed as

𝑷 = 𝜕𝑊
𝜕𝑭

− 𝑐0𝑭 −𝑇 . (4)

More details about the complete formulation and the derivation of the
first Piola-Kirchhoff stress tensor 𝑷 can be found elsewhere [37].

Several hyperelasticity theories have been presented, and several
strain energy functions proposed to represent the behavior of elas-
tomeric materials (e.g., Mooney–Rivlin, Ogden, Arruda-Boyce, Yeoh,
among others [37,38]). The expanded formulation for the strain energy
function presented by Mooney [39] and Rivlin [40] is used herein,
which is defined by

𝑊 (𝐼1, 𝐼2) =
∞
∑

𝑐𝑝𝑞
(

𝐼1 − 3
)𝑝 (𝐼2 − 3

)𝑞 , (5)
4

𝑝,𝑞=0
where the coefficients 𝑐𝑝𝑞 are material parameters. It is worth mention-
ing that the requirement of zero energy at the reference configuration
is met only if 𝑐00 equals to zero. Thus, considering the strain energy
density 𝑊 presented in Eq. (5), the first Piola-Kirchhoff stress tensor 𝑷
defined in Eq. (4) can be expressed as

𝑷 =
∞
∑

𝑝,𝑞=0
2
(

𝐼1 − 3
)𝑝 (𝐼2 − 3

)𝑞 [(𝑝 + 1)𝑐(𝑝+1)𝑞𝑭 + (𝑞 + 1)

× 𝑐𝑝(𝑞+1)
(

𝐼1𝑭 − 𝑩𝑭
)]

− 𝑐0𝑭 −𝑇 .
(6)

Since the predominant deformation of HDRBs is in shear, and the
aim of this work is to approximate the shear behavior of rubber bear-
ings, a reasonable assumption is to consider a pure shear deformation
state on the derivation of these equations. In that case, the defor-
mation gradient tensor 𝑭 , and the corresponding left Cauchy–Green
deformation tensor 𝑩 are

𝑭 =
⎡

⎢

⎢

⎣

1 𝛾 0
0 1 0
0 0 1

⎤

⎥

⎥

⎦

, 𝑩 =
⎡

⎢

⎢

⎣

𝛾2 + 1 𝛾 0
𝛾 1 0
0 0 1

⎤

⎥

⎥

⎦

, (7)

where 𝛾 is the shear strain of the elastomeric compound (𝛾 = 𝑑∕𝐻𝑟).
Then, introducing the condition of a pure shear deformation state
(Eq. (7)), and considering a hydrostatic pressure equal to zero (𝑐0 = 0),
the shear component of the first Piola-Kirchhoff stress tensor (Eq. (6))
is

𝑷 (1, 2) = 𝑐00 + 2(𝑐01 + 𝑐10)𝛾 + 4(𝑐02 + 𝑐11 + 𝑐20)𝛾3 + 6(𝑐03 +⋯)𝛾5

+ 8(𝑐04 +⋯)𝛾7 + 10(𝑐05 +⋯)𝛾9 +⋯ . (8)

It is worth noting that for this deformation state, the shear component
of the first Piola-Kirchhoff stress tensor, and the shear component of
the commonly used Cauchy stress tensor are equal.

Given the shape of the hyperelastic component of HDRBs (Fig. 3b),
and calibrating the parameters of Eq. (8) to match the hyperelastic
component of the experimental results, it can be shown that the terms
of power of 𝛾 higher than five have a negligible contribution to the
shear component. Therefore, the shear stress of the material truncated
after the third term can be expressed as

𝑷 (1, 2) ≈ 2
(

𝑐01 + 𝑐10
)

𝛾+4
(

𝑐02 + 𝑐11 + 𝑐20
)

𝛾3+6
(

𝑐03 + 𝑐12 + 𝑐21 + 𝑐30
)

𝛾5.

(9)

Considering now that the shear force of the device is the integral

of the shear stress 𝑷 (1, 2) across the cross section 𝐴 of the isolator, and
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assuming that the shear stress is constant across the area given the small
thickness of the elastomeric pads, the total shear force 𝐹ℎ of the device
s

ℎ ≈ 𝑎1𝛾 − 𝑎2𝛾
3 + 𝑎3𝛾

5, (10)

here the 𝑎𝑖 terms are the sum of the corresponding material 𝑐𝑝𝑞 param-
eters multiplied by the area 𝐴 of the isolator cross-section. Assuming
also that the degradation factors for scragging and Mullins effect are
controlled by the constants of the hyperelastic component, the values
of 𝑎𝑖 can be expressed as

𝑎1 = 2
(

𝑐01 + 𝑐10
) (

𝑓𝑠1𝑓𝑚1
)

𝐴 = 𝑓𝑠1𝑓𝑚1𝑎10, (11a)

𝑎2 = 4
(

𝑐02 + 𝑐11 + 𝑐20
) (

𝑓𝑠2𝑓𝑚2
)

𝐴 = 𝑓𝑠2𝑓𝑚2𝑎20, (11b)

𝑎3 = 6
(

𝑐03 + 𝑐12 + 𝑐21 + 𝑐30
) (

𝑓𝑠3𝑓𝑚3
)

𝐴 = 𝑓𝑠3𝑓𝑚3𝑎30, (11c)

where 𝑓𝑠𝑖 and 𝑓𝑚𝑖 are the 𝑖-th degradation factors that represent the
scragging and Mullins effect, respectively, whose values depend on the
material; and 𝑎𝑖0 is the 𝑖-th hyperelastic constant, which depends on the
mechanical properties of the virgin material and the cross-section area
of the device. The computation of the values for 𝑓𝑠𝑖 and 𝑓𝑚𝑖 is detailed
later in this paper.

3.2. Dissipative component

The energy dissipation capacity of the device is explicitly modeled
by the dissipative component, which controls the smooth transition
zone and temporary hardening. A numerical phenomenological model
capable of considering both characteristics is the Bouc-Wen model with
hardening as proposed by Karavasilis et al. [41]. This model results
from the combination of an elastic and an elastic perfectly-plastic
component in parallel. The elastic component of the model is neglected
since its behavior is already captured by the hyperelastic component
described previously, and hence the dissipative component force 𝐹𝑑 is
defined as

𝐹𝑑 = 𝑓𝑦𝑧, (12)

where 𝑓𝑦 is the yield force and z is a dimensionless hysteretic parameter
governed by the evolution law [41]

̇ = 𝑘
𝑓𝑦

�̇�
[

1 − |𝑧|𝜂 (𝛽 sgn(�̇�𝑧) + 𝛼 −𝛷 sgn(�̇�) (sgn(𝑧) + sgn(�̇�)))
]

, (13)

where �̇� is the shear strain rate; 𝑘 is a parameter defined by the initial
stiffness of the device 𝑘𝑖 multiplied by the total height of rubber 𝐻𝑟
(𝑘 = 𝑘𝑖 ∗ 𝐻𝑟); 𝛽 and 𝛼 are parameters that control the shape of the
cycle and satisfy the relationship 𝛽 + 𝛼 = 1; 𝜂 controls the sharpness of
the smooth transition from the elastic to the inelastic zone; 𝛷 controls
the temporary hardening; and sgn(∙) is the signum function.

Although the model is capable of considering different levels of
temporary hardening in each direction, it is assumed identical for both
deformation directions. The parameter 𝛷 is determined by

𝛷 = 𝛷𝑚𝑎𝑥

[

1 − exp

(

−𝑃𝛷

|

|

|

|

|

𝛾𝑝𝑙
𝛾𝑦

|

|

|

|

|

)]

, (14)

here 𝛷𝑚𝑎𝑥 represents the maximum possible value of 𝛷; 𝑃𝛷 is the
arameter that controls the temporary hardening rate; 𝛾𝑦 is the yield

shear strain
(

𝑓𝑦∕𝑘
)

; and 𝛾𝑝𝑙 is the plastic shear strain corresponding to
the last change of load direction. Detailed information about evolution
laws of different variables of the Bouc-Wen model with hardening can
be found elsewhere [41].

3.3. Stiffness degradation

The experimental results show that the effect of stiffness degra-
dation in the shear force–deformation response (Fig. 1) cannot be
neglected since it represents an important decrease in the force of
HDRBs at the same strain level for each consecutive cycle. Some
5

researchers argue that stiffness degradation occurs in both, the hyper-
elastic and dissipation components [20]. However, decomposing the
experimental responses in their components (e.g., Fig. 3), it is apparent
that the hyperelastic component presents stiffness degradation, while
the dissipation component keeps its yield force (𝑓𝑦) for a constant strain
level, and it increases (temporary hardening) as the strain level in-
creases. Consequently, the stiffness degradation is included herein only
through the parameters 𝑎1, 𝑎2, and 𝑎3 of the hyperelastic component.
Then, considering Eq. (11), the stiffness degradation factors can be
expressed as
𝑎𝑖
𝑎𝑖0

= 𝑓𝑠𝑖𝑓𝑚𝑖. (15)

After separating the response of the 924 HDRBs in the hyperelastic
and dissipative components and calibrating the parameters of Eq. (10)
to match the hyperelastic components, the values of parameters 𝑎𝑖 were
estimated for each cycle and strain level. Assuming that the hyperelastic
parameter values of the first cycle of the first strain level correspond to
the parameters of the virgin material (𝑎𝑖0), the degradation parameters
for the rest of the cycles and strain levels were estimated using Eq. (15).

Fig. 4 shows schematically the stiffness degradation idealization in
the shear force–deformation constitutive relationship of HDRBs and
box-plots of the estimated degradation factors 𝑓𝑠𝑖𝑓𝑚𝑖. It is apparent from
the figure that each degradation coefficient evolves differently. Also,
there is a high dispersion (length of bars) of the degradation factors
𝑓𝑠2𝑓𝑚2 and 𝑓𝑠3𝑓𝑚3 at small strain levels, which is indicative of the small
influence of these factors in that range of deformations. In terms of the
scragging, 𝑓𝑠1𝑓𝑚1 shows an increase during loading of the first cycle at
each shear strain level and in the unloading branch between the first
and second cycles. Fig. 4a shows the total scragging for which the force
of the hypothetical cycle without scragging during loading is always
larger than the actual response. This can be observed by comparing the
values of degradation factors occurring at cycles 8 and 15 (the effect
in cycle 22 is less evident). The total scragging at these shear strains
corresponds to the sum of the drop in force of the previous and next
cycle, respectively. Notice that for 𝑓𝑠2𝑓𝑚2 and 𝑓𝑠3𝑓𝑚3 the Mullins effect,
which is represented by the purple little bar, is negligible, which means
that for the same shear strain level, 𝑓𝑠𝑖𝑓𝑚𝑖 remains essentially constant
for all cycles. Thus, 𝑓𝑚2 and 𝑓𝑚3 are considered constant and equal to
1. The opposite occurs with 𝑓𝑠1𝑓𝑚1, for which the degradation due to
the Mullins effect is evident.

3.3.1. Scragging effect
As defined in the previous section, scragging is the long-term stiff-

ness degradation of the hyperelastic component and is reflected be-
tween the first and second cycle at each strain level (see Fig. 4). The
function that represents this phenomenon must equal one when the
device has no previous deformation and converge asymptotically to
zero (or any other value between zero and one) as the strain approaches
infinite. Because this decrease must be smooth, the expressions for the
degradation factors due to scragging are defined as

𝑓𝑠1 = exp(−𝐶1𝛾
𝑝1
𝑠 ), (16a)

𝑓𝑠2 = 𝑓𝑠1 exp(−𝐶2𝛾
𝑝2
𝑠 ), (16b)

𝑓𝑠3 = 𝑓𝑠1 exp(−𝐶3𝛾
𝑝3
𝑠 ), (16c)

where 𝐶𝑖 are material parameters, and the 𝑝𝑖 are constants that control
the decay of the function for each term of the hyperelastic component,
𝑎𝑖, 𝑖 = 1, 2, 3, for which the unique value that requires an evolution
law in Eq. (16) is the internal variable 𝛾𝑠, defined as the corresponding
shear strain for the scragging effect. Three important assumptions are
considered to develop this evolution law: (i) 𝛾𝑠 is always less than or
equal to the value of 𝛾 at which the previous cycles were performed;
(ii) for the first loading cycle at a new shear strain 𝛾, 𝛾𝑠 evolves slower
than the increase experienced by 𝛾; and (iii) for the unloading branch,
𝛾 evolves quickly to achieve the full scragged state at that level of 𝛾.
𝑠
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Fig. 4. Evolution of the degradation factors with the number of cycles: (a) sketch of the degradation in the force–deformation response; and box-plots of the estimated experimental
values for (b) 𝑓𝑠1𝑓𝑚1 (c) 𝑓𝑠2𝑓𝑚2, and (d) 𝑓𝑠3𝑓𝑚3.
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These assumptions are based on the idealization presented in Figs. 3d
and 4a. Therefore, the proposed value for 𝛾𝑠 is

𝛾±𝑠 = min
(

𝛾±ℎ𝑝, 𝛾
±
𝑠(𝑡𝑟𝑖𝑎𝑙)

)

, (17)

where 𝛾±ℎ𝑝 is the peak strain value of 𝛾 at which the previous cycles were
performed, and 𝛾±𝑠(𝑡𝑟𝑖𝑎𝑙) is the projected 𝛾𝑠, which is computed from the
previous value of 𝛾𝑠 and a rate of change that depends on the loading
state

�̇�±𝑠(𝑡𝑟𝑖𝑎𝑙) =

⎧

⎪

⎨

⎪

⎩

|�̇�|
2

, for loading

4 |�̇�| , for unloading.
(18)

The superscript ± reflects the unilateral effect, which means that the
ncrement of 𝛾𝑠 occurs in each direction independently. The factors of
1∕2 and 4 for loading and unloading are heuristic and proposed based
n the experimental results.

.3.2. Mullins effect
The short-term stiffness degradation of the hyperelastic component

hat occurs in the second and subsequent cycles is defined as the
ullins effect. Analogous to scragging, the function that describes this

ecay must equal one when the elastomer has no previous deformation
nd be asymptotic to zero (or any other value between zero and one)
s the number of cycles increases. However, as stated before such effect
s only present in the 𝑓𝑚1 coefficient, while for 𝑓𝑚2 = 𝑓𝑚3 ≈ 1. Because
he trends of 𝑓𝑚1 resemble those of 𝑓𝑠1, the proposed evolution function
or the Mullins effect factor is

𝑚1 = 𝑒𝑥𝑝(−𝐶𝑚𝛾
𝑝𝑚
𝑚 ), (19)

here 𝐶𝑚 is a material parameter, 𝑝𝑚 is a constant that controls the
ecay of the function, and 𝛾𝑚 is the cumulative strain. Similar to
cragging, the Mullins phenomenon shows a unilateral effect. Hence,
he 𝛾𝑚 increments are independent in each direction. Considering that
he Mullins factor only increases during unloading, the evolution law
or 𝛾𝑚 is defined by the increase rate

�̇�±𝑚 =

{

0, for loading
|�̇�| , for unloading.

(20)

The complete model is then defined by a total of 17 parame-
6

ers: three for the hyperelastic component (𝑎10, 𝑎20, 𝑎30), four for the
issipative component (𝛾𝑦, 𝑓𝑦, 𝛽, 𝜂), two for defining the temporary
ardening (𝛷𝑚𝑎𝑥, 𝑃𝛷), six for defining scragging (𝐶1, 𝑝1, 𝐶2, 𝑝2, 𝐶3,

𝑝3), and two for defining the Mullins effect (𝐶𝑚, 𝑝𝑚). Consequently, the
calibration of these parameters can be difficult and time-consuming.
Thus, a reduction in the number of parameters is presented next, as
well as an estimation model for the rest that depend on the geometry
of the device and material properties.

4. Prediction model for the parameter values

The mathematical model proposed needs to be calibrated from
experimental tests. In design, however, the results of such tests are
not available and even if they were, parameter calibration would be
cumbersome. Thus, this section aims to estimate the model parameter
values from the general geometric and material characteristics of the
device, using a base expansion and linear regressions. The aim of the
prediction model is twofold: to estimate the parameter values for the
behavior of an average device of a set of HDRBs with the same nominal
properties, which can be useful to predict the overall behavior of
seismically isolated structures; and to provide a set of initial parameters
for the calibration of the proposed model to match the experimental
response of HDRBs. Then, the results of this prediction model can be
used depending on the available data.

First, the 17 parameter values were estimated to match the ex-
perimental results of the 924 devices of the subset. The calibration
process considered the minimization of the squared difference between
the measured and model forces for each sampled deformation, i.e., the
objective was to

minimize
{ 𝑠

∑

𝑖=1

(

𝑓 𝑡
𝑖 − 𝑓𝑚

𝑖
)2
}

, (21)

where 𝑠 is the number of sampled deformations, and 𝑓 𝑡
𝑖 and 𝑓𝑚

𝑖 are the
forces corresponding to the 𝑖-th sampled deformation of the test and
model results, respectively. Force was preferred over dissipated energy
per cycle as a measure of the error since the latter equalizes the area
without explicitly considering the shape of the cycle, while the force
error seeks equality at each measured point and indirectly enforces to
preserve the shape of the response cycle [18].

The minimization procedure was automated using the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) proposed by Hansen
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nd Ostermeier [42], and was implemented as presented in the liter-
ture [43]. This algorithm has already been used in structural engi-
eering in the identification of structural systems [44,45]. The method
ses the previously stated demands for the evolution path of muta-
ions rather than using arbitrary normal mutations to improve the
earch [42]. However, two small modifications were introduced to the
ase algorithm: (i) the first element in each family mutation step is
he best-fitted set of the previous step; and (ii) the maximum variation
or each mutation of the parameters is established as a function of the
alues corresponding to the best-fitted set in the previous step. The first
odification was to ensure that in each step, the error is less than or

qual to the error in the previous step, while the second modification
as due to the different magnitudes of parameters and the unbounded
alues. The CMA-ES algorithm considered the following: a maximum
ariation of each step of 25%; 20 descendants in each step; a maximum
umber of 2000 iterations (or descendants), which means 100 steps;
nd only the best descendant was considered for recombination.

After the calibration process, the response of the 924 HDRBs was
imulated with the proposed model. Thus, the result of the calibration
rocess is 924 sets for the 17 model parameters, where each set corre-
ponds to a different device. Two randomly selected examples of these
alibration results are presented in Fig. 7. The aim of the following
ubsections is to analyze and predict the values of the 17 model
arameters; and hence, this calibration is essential for the prediction
odel since these data are used for the calibration and test of the
odel.

.1. Base expansion

Six geometric properties, one material parameter, and one loading
ondition are considered as predictors or explanatory variables for the
rediction model. These are the outer diameter of the bearing (𝐷
7

𝑜

n cm), inner diameter (𝐷𝑖 in cm), shape factor (𝑆, dimensionless),
umber of rubber layers (𝑛, dimensionless integer), the thickness of
ubber layers (𝑡𝑟 in cm), the total height of rubber (𝐻𝑟 in cm), shear
odulus (𝐺 in tonf/cm2) of the elastomeric material and the axial load
𝑃 in tonf). In addition, two device properties are also considered:

nominal shear stiffness (𝐾ℎ = 𝐴𝐺∕𝐻𝑟 in tonf/cm, where 𝐴 is the cross
section area of the rubber layers), and the compressive stress (𝜎 = 𝑃∕𝐴
in tonf/cm2). All of these parameters were determined for each device.

Linear regression was used to estimate the parameter values of the
numerical model, which limitation is that the method can only approx-
imate the value of the response variable using linear combinations of
the predictors. Thus, for the sake of accuracy, to consider non-linear
and non-additive relationships between the predictors and response
variables, a basis expansion is used. This is a popular methodology for
extending the applicability beyond linearity, more details about basis
expansions can be found elsewhere [46]. Then, the transformations of
the considered predictors for the estimation model are: the square of
the values (e.g., 𝐷2

𝑜 , 𝐷
2
𝑖 ), the inverse values (e.g., 1∕𝐷𝑜, 1∕𝐷𝑖), all the

multiplicative combinations (e.g., 𝐷𝑜 ∗ 𝐷𝑖, 𝐷𝑜 ∗ 𝑡𝑟), and the division
combinations (e.g., 𝐷𝑜∕𝐷𝑖, 𝐷𝑜∕𝑡𝑟). These transformations were used
or simplicity, thus avoiding more complex models since the aim is
o provide a simple prediction model. The set of predictors reached a
umber of 167 (𝐻3

𝑟 and 𝐻5
𝑟 were included for 𝑎20 and 𝑎30), allowing

he consideration of some non-linear relations between the model
arameters and the geometrical and material properties. Although the
rediction model is based only on physically sound properties, this
ork aims to find the best possible mathematical representation of

he force–deformation relationship of HDRBs. Indeed, this implies a
rade-off between the physical meaning of the model and numerical
ccuracy.
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4.2. Optional prediction models

A linear regression was used to develop the prediction model to
estimate a single value of parameter 𝑌 . The 𝑝 inputs of the model are
grouped in the vector 𝑋𝑇 =

(

𝑋1, 𝑋2,… , 𝑋𝑝
)

, where 𝑋𝑖 is the value of
the 𝑖-th predictor. The estimation of the parameter 𝑌 is expressed as

𝑌 = 𝛽0 +
𝑝
∑

𝑗=1
𝑋𝑗𝛽𝑗 , (22)

where 𝛽0 is the intercept, also known as the bias; and 𝛽 =
[

𝛽𝑗
]

is the
𝑝-vector coefficients of the linear regression. The coefficients of vector
𝛽 are estimated from the minimization of the Residual Sum of Squares
(RSS) and can be explicitly evaluated as [46]

𝛽 =
(

𝑿𝑇𝑿
)−1 𝑿𝑇 𝒀 , (23)

where 𝑿 is an 𝑁 × 𝑝 matrix with each row corresponding to an input
vector, and 𝒀 is an 𝑁-vector with the measurements of parameter
𝑌 , and 𝑁 is the number of cases (devices) in the dataset. However,
considering all 167 predictors to estimate each model parameter would
result in models that are too complex and with low accuracy. In statis-
tical terms, this is due to the bias–variance trade-off; linear regressions
often have a low bias but high variance. Sometimes, it is better to
sacrifice bias marginally to reduce the variance of the prediction [46],
resulting in an improved estimation. Moreover, too many predictors
generate over-fitting, which limits the generalization of the model.
Consequently, it is convenient to select a small subset of predictors
capable of representing the relevant behavior of the variables.

The database with 924 devices was divided randomly into two
groups: the training data (80%) and the validation data (20%). The for-
mer is used in model calibration, while the latter in model validation.
A different subset of predictors was selected for each target parameter,
which unknowns are the number and predictors to use. This is a non-
trivial task due to the large number of variables used and possible
combinations. The process of selecting the predictors is commonly
known as model selection, and it was performed using the software
𝑅 [47]. The different subsets considered a number of predictors ranging
between 0 and 25 to build the prediction models, reaching a universe of
26 models per parameter. In the case of no predictors, the mean of the
training dataset is used as the estimation, while for the model with a
single predictor, the parameter that minimizes the Mean Squared Error
(MSE) 𝛹 is selected. For the subsets with two and more predictors, the
sequential replacement algorithm was used [48]. The basic idea of the
method is to select an initial group of predictors randomly and check
if replacing any of the ones selected with another, the MSE is reduced.
More details about the method can be found elsewhere [48]. All the
estimation models used the MSE as a quantifier of the accuracy, which
is computed using the expression

𝛹 = 1
𝑚

𝑚
∑

𝑖=1

(

𝑌𝑖 − 𝑌𝑖
)2 , (24)

where 𝑚 is the number of data points.
Fig. 5 shows the MSE with the training (𝛹train) and validation (𝛹test)

datasets for all variables. In all cases, the 𝛹train decreases as the number
of predictors increases, as it should be expected. However, the same
is not true for the 𝛹test . This is a consequence of the bias–variance
trade-off; as the model complexity rises, the bias reduces at a lesser
rate than the increase in variance. An interesting feature is that 𝛹test
is under 𝛹train for some variables, which is not a common trend since
the estimation model should show a better fit since it uses the training
dataset for its calibration. Nonetheless, this is the case due to the
partition of the data in these two groups. The training dataset resulted
in a larger dispersion than the test dataset; and hence, the 𝛹train is larger
8

than the 𝛹test .
Table 2
Estimation of the constant value model parameters.

Variable Value Variable Value

𝐶1 0.640 𝐶𝑚 0.165
𝐶2 15.457 𝜂 0.319
𝑝2 0.304 𝛷𝑚𝑎𝑥 0.233
𝑝3 0.235 𝑃𝛷 0.008

Table 3
Estimation models for parameters considered as variable.

Variable Units Value

𝑎10 tonf 3.046 + 2.201𝐻𝑟𝐾ℎ
𝑎20 tonf −166.48 + 1.84𝐻2

𝑟
𝑎30 tonf 1.617 + 0.0003𝐻5

𝑟
𝑝1 [–] 0.467 + 1.15𝐻𝑟𝜎
𝐶3 [–] 0.722 + 0.241𝐻𝑟
𝑝𝑚 [–] 0.209 + 0.0004𝑃𝜎
𝛾𝑦 [–] 0.029 − 9.0𝑒7𝐻3

𝑟
𝑓𝑦 tonf 1.667 + 0.00005𝑃𝐷𝑜
𝛽a [–] 0.86 − 0.008𝐾ℎ∕𝐻𝑟

aThe values were limited to the range between 0.1 and 0.9.

4.3. Selection of the prediction model

The prediction model selection is based on the minimization of the
MSE. However, it is impractical to use a model with a large number of
predictors. Thus, the target model aims to achieve two main character-
istics: minimum 𝛹test (for generalization performance on independent
data), and a minimum number of predictors (for minimization of
model complexity). Based on the MSE results of the possible prediction
models, the model parameters can be split into two groups depending
on the number of needed predictors: those with constant value and
those truly variable.

A model parameter is considered constant if the 𝛹test value of the
odel using no predictors is smaller than the minimum value of 𝛹test

plus 10%. This requirement is fulfilled by eight model parameters,
which are listed in Table 2. It is worth mentioning that one of the
two parameters controlling degradation on each term can be considered
constant, with the exception of the term 𝑓𝑠2 for which both parameters
can be considered constant. Additionally, the parameters that control
the sharpness of the smooth transition of the force–deformation cycle
from the elastic to the inelastic zone, and the temporary hardening can
also be considered constant.

The other nine parameters were estimated considering prediction
models with a single predictor. Please notice that the prediction model
was developed for a shear force response in tonf, thus the estimated
values of the parameters 𝑎10, 𝑎20, 𝑎30 and 𝑓𝑦 are in tonf. Table 3
summarizes the estimation models of these nine parameters, which
were estimated using the classical linear regression presented above.
Although each parameter shows dependency with different predictors,
the total height of rubber, 𝐻𝑟, seems to influence the value of most
parameters.

Fig. 6 shows two examples with the data points and the prediction
of parameters 𝑎10 and 𝑝𝑚. Both parameters show significant variability
in the results due to the large uncertainty of the force–deformation
constitutive behavior of the devices. As a consequence, the experi-
mental results of given single device show significant differences from
the numerical results obtained using the estimation model since the
latter is intended to estimate the behavior of an average device in a
batch. Please notice that the prediction model was developed entirely
from a statistical approach, and some relations shown in Table 3 may
seem illogical from a physically oriented approach. However, these
expressions are the ones that best fit the experimental data.



Engineering Structures 289 (2023) 116234J.A. Gallardo et al.
Fig. 6. Example of data points and estimation of model parameters: (a) 𝑎10, and (b)
𝑝𝑚.

5. Validation of the proposed model and results

In this section, the proposed numerical model and the prediction
model for the parameters are validated using experimental data. The
experimental results correspond to devices subjected to the design axial
loads and a specific horizontal cyclic deformation history. So far, since
the proposed model neglects the coupling between axial and shear
loads, only the horizontal cyclic deformation history was considered
for the numerical tests. Three types of results are presented next,
two aimed at displaying the capabilities of the model that include:
(a) global results to evaluate the accuracy of the model versus the
experimental cyclic behavior of HDRBs, and (b) relative comparisons
of the accuracy of the proposed model with respect to other three
existing numerical models; and another aimed at validating the quality
of the predictions of the model parameters through a (c) comparison
between the numerical results with the parameter values computed by
the prediction model and the experimental results of two sets of devices
with different nominal properties.

5.1. Global results

Two annular HDRBs were randomly selected as examples to present
the typical accuracy of the model; the benchmark devices were tested
for quality control and belong to different building projects. The mate-
rial and geometric properties are different for both examples to show
the capability of the model to simulate the force–deformation response
of different devices. The benchmark devices were randomly selected
from the dataset of 924 HDRBs, and the resulting model used parame-
ters of the calibration process with the CMA-ES algorithm explained in
the previous section.

Fig. 7 compares the numerical responses of the proposed model and
9

the corresponding experimental test results. In both cases, the proposed
Fig. 7. Force–deformations comparison between numerical (solid line) and experimen-
tal responses (dashed line) for two different isolation devices: (a) HDRB-1 and (b)
HDRB-2.

model represents the behavior of the device with sufficient accuracy,
including the effective stiffness, energy dissipation, maximum force,
and stiffness degradation. These results are typical of the 924 bench-
mark devices of the subset, demonstrating that the proposed model
represents well the shear behavior of HDRBs. The largest differences
between the numerical and experimental results occur for the initial
stiffness. The proposed model underestimates this stiffness value since
the initial stiffness of the model equals the initial stiffness of each
unloading branch. Thus, the calibration algorithm tries to match the
unloading stiffness rather than of the initial stiffness of the device.

5.2. Comparison with other numerical models

The accuracy of the proposed model is also compared with other
numerical models available in the literature. Three numerical models
with different levels of sophistication were used as benchmark. The first
is the one proposed by Oliveto et al. [17] (𝑀1) for bi-directional shear,
which requires the calibration of 16 parameters and consists of seven
elements connected in parallel: a nonlinear spring, a bounding surface
plasticity element, and five elastoplastic elements. The second is the
model proposed by Grant et al. [20] (𝑀2), also for bi-directional shear.
This model requires the calibration of 10 parameters and decomposes
the response into two components working in parallel, an elastic and a
hysteretic component. The model includes degradation and stiffening
at high strain levels. The third is the numerical model proposed by
Tubaldi et al. [21] (𝑀3), which needs the calibration of 16 parameters
to include stiffness degradation and strain-rate dependency.

Before this comparison, each implementation of the previous an-
alytical models was verified using the examples presented in each
reference. Once each code was validated, an arbitrary device was
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s

e

s
(

Table 4
Quantitative comparison between the different numerical models and experimental test
results, measured as the percentage difference.

Model 𝛹 𝐸𝑇 𝐾𝑖𝑛𝑖 𝐸1 𝐸5 𝐾1 𝐾5

Proposed 0.67 0.67 −59.28 −5.58 2.49 3.11 4.27
𝑀1 3.35 4.00 −38.88 −16.44 1.25 −17.96 0.66
𝑀2 2.08 −6.41 −72.21 −27.45 −12.72 −2.34 −1.78
𝑀3 0.70 −1.31 −76.50 −5.13 −1.10 −1.62 4.20

chosen from our database and used in the comparison. The set of
parameters for each model, including the parameters for the proposed
model, was calibrated using the CMA-ES algorithm [42] using the same
parameters as described previously for the optimization algorithm. It is
important to mention that the set of parameters for each model may
not necessarily be the optimal set, including the case of our proposed
model, since the algorithm may find a local minimum for the RSS
during the optimization process.

Fig. 8 shows the comparison of the proposed and the other three
numerical models with the experimental results of a benchmark device.
Visual inspection shows that the proposed model fits better the exper-
imental test results than the other three numerical models. The 𝑀1
ries to match the shape of the force–deformation response but does
ot incorporate stiffness degradation and has a non-smooth unloading
urve. The advantage of this model, though, is its computing time,
hich is the lowest among all four models. The 𝑀2 model shows good
greement in the shape of the unloading curve; however, it does not
ncorporate the unilateral effect, i.e., scragging is only present in the
irst half cycle of each strain level. In addition, since the parameter
hat controls the stiffness degradation evolves only during unloading,
he force estimates present a sharp increase in the first cycle of the last
hear deformation level. Another small disadvantage of this model is
resent in the transition zone, where the unloading of the first cycle
10

eads to larger values than the experimental results, this is clearly
hown in the largest strain level. The 𝑀3 model also fits reasonably
well the experimental response. Differences can be found in the initial
stiffness and stiffness degradation. The former is significantly underes-
timated, and the latter is not captured properly in all cycles, since the
model underestimates the stiffness degradation between the first and
second cycles.

Seven response parameters were measured to evaluate the accuracy
of the models quantitatively: MSE of the forces 𝛹 , total dissipated
nergy 𝐸𝑇 , initial stiffness 𝐾𝑖𝑛𝑖, dissipated energy during the first and

fifth cycles of the maximum strain levels (𝐸1 and 𝐸5, respectively), and
ecant stiffness at the first and fifth cycles of the maximum strain levels
𝐾1 and 𝐾5, respectively). The secant stiffness and energy dissipated

per cycle were chosen since they are the most used parameters in
design. Also, the first and fifth cycles were considered to account for the
behavior before and after scragging. The aim of this comparison is to
roughly quantify the overall difference between the numerical models
and the experimental test results. The percentage difference was used
for all response parameters with the exception of the MSE.

Table 4 presents the numerical results of the comparison. The
proposed model gets the minimum MSE (𝛹 ) with a value of 0.67,
followed closely by M3, and with larger differences for M2, and M1,
respectively. In terms of total dissipated energy (𝐸𝑇 ), the proposed
model is the best at simulating the experimental results, with an error
value of 0.67%, while the model 𝑀3 is the second, underestimating the
total energy dissipating by 1.31%. Considering the errors of dissipated
energy during single cycles (𝐸1, 𝐸5), the proposed and 𝑀3 models show
smaller differences than the other two models, with values up to 6%.
Thus, both models can effectively simulate the dissipated energy at
every single cycle. The 𝑀1 model is the only one which error in secant
stiffness is larger than 5% (𝐾1). It occurs for the first cycle and is a
consequence of the model that does not include stiffness degradation.
The initial stiffness (𝐾𝑖𝑛𝑖) is the parameter with larger estimation errors.
All models underestimated the value of this parameter, but the best
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Fig. 9. Force–deformation cycle comparisons using the estimated values of the pro-
posed numerical model (solid black line) with experimental test results (colored lines)
of (a) Set-1 and (b) Set-2.

estimation is produced by 𝑀1, followed by the proposed model, with
values of −38.88 and −59.28%, respectively. This quantitative compari-
son shows that the proposed model is reasonably accurate and provides
a balanced error between all the considered parameters.

5.3. Overall results of the prediction model

The prediction for the model parameters, which was presented in
the previous section, was evaluated using two sets of independent tests
of devices that were not considered in the model development and its
calibration. These validation sets come from the experimental results
of the production testing of accepted devices for other two different
building projects. The sets are denoted as Set-1 and Set-2, which include
results of 66 and 77 HDRBs, respectively.

Fig. 9 shows a comparison between the force–deformation cyclic
results of the proposed numerical model using the parameter values
of the estimated model presented in the previous section, and two new
sets of experimental test results. The sets of experimental results show
large variability, which can be seen clearly in Figs. 9a and 9b. All
devices of each test were manufactured with the same nominal materi-
als and geometrical properties, and were tested using the same load
pattern. The variability of the force–deformation response is mainly
due to the intrinsic variability of the mechanical properties of the
rubber material and the manufacturing process. It is well known that
the rheological properties of the elastomeric compound are extremely
sensitive to temperature and pressure, as well as the time of curing.
The misalignment of the steel shims also influences its lateral and
11
vertical behavior. The numerical model using the estimated parameters
represents the behavior of an average device of both sets of devices
reasonably well. The estimated response fits well the initial stiffness,
energy dissipation capacity, and degradation observed in the experi-
mental results, demonstrating that it can be used for the simulation of
general HDRBs under dynamic and static loads.

6. Numerical implementation

The source code for the proposed model is available at https:
//github.com/JAGallardo1992/HDRB_model. The repository includes
the Python and Matlab implementations, and an example with the
experimental response for an HDRB.

7. Summary and conclusions

This work proposes a new force–deformation phenomenological
constitutive model for HDRBs. The model consists of two components
connected in parallel, a hyperelastic spring and a dissipative element.
The former includes anisotropic stiffness degradation (scragging and
Mullins effect), while the latter considers temporary hardening. The
results on a large database of 924 devices demonstrate that the pro-
posed model can accurately simulate the cyclic behavior of HDRBs.
Also, the statistical procedure performed to establish the variables of
the prediction model show that eight of the seventeen parameters of
the model can be considered constant, while the other nine need to be
estimated from the geometric and material properties of the devices.
The estimation model can simulate the behavior of an average device of
a batch of nominally identical HDRBs. The necessary information for es-
timating the model parameter values is included. The main conclusions
of this research are:

• The model is capable of accurately simulating anisotropic degra-
dation, as well as temporary hardening, phenomena that have
been ignored by several of the previous numerical models. An-
other important feature of the proposed model is that the scrag-
ging control variable evolves in the loading branch (Eq. (18)),
thus avoiding a sharp growth of the shear force in the first cycle
at large strain levels. Although the number of model parameters
is large (17), only nine require calibration, making it simpler to
calibrate with experimental data.

• The proposed model was also tested against three existing al-
ternative HDRB models showing slightly better performance for
the data set considered herein. The proposed model also includes
the unilateral effect and the temporary hardening, which is not
commonly present in existent models.

• The parameter estimation model presented in Section 4 is derived
from a statistical approach, which implies a trade-off between
physical meaning and numerical accuracy. Thus, some relations
among parameters have no physical meaning, but they represent
the best-fit models for the experimental data. All other physically-
based relations provided poorer numerical estimations for the
same model parameter values.

• The available experimental data of nominal identical devices
shows significant uncertainty in the force–deformation response.
The material, as well as the manufacturing process, are both im-
portant sources to explain variability in the response. Naturally,
part of this uncertainty in the test results can also be attributed
to the measurement procedure and the experimental setup [29].
No matter the source, the inherent uncertainty of the devices
should be taken into account in the analysis of isolated structures.
This is particularly important since the nonlinear behavior of
the building strongly depends on the behavior of the isolation
system. This variability may induce a relevant variation in the
shear forces, accelerations, and floor displacements.

https://github.com/JAGallardo1992/HDRB_model
https://github.com/JAGallardo1992/HDRB_model
https://github.com/JAGallardo1992/HDRB_model


Engineering Structures 289 (2023) 116234J.A. Gallardo et al.
CRediT authorship contribution statement

José A. Gallardo: Conceptualization, Methodology, Investigation,
Software, Validation. Juan C. de la Llera: Conceptualization, Writing
– review & editing, Supervision, Funding acquisition. José I. Restrepo:
Validation, Supervision. Michelle Chen: Validation, Writing – review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This research has been sponsored by ANID, under the projects:
ANID/doctorate scholarship/ 21201370; Research Center for Integrated
Disaster Risk Management (CIGIDEN), ANID/ FONDAP/ 1522A0005;
and FONDECYT project, Multiscale earthquake risk mitigation of health-
care networks using seismic isolation, ANID/ FONDECYT/ 1220292.

References

[1] Mokha AS, Amin N, Constantinou MC, Zayas V. Seismic isolation retrofit of large
historic building. J Struct Eng 1996;122(3):298–308. http://dx.doi.org/10.1061/
(ASCE)0733-9445(1996)122:3(298).

[2] Matsagar VA, Jangid R. Base isolation for seismic retrofitting of structures. Pract
Period Struct Des Constr 2008;13(4):175–85. http://dx.doi.org/10.1061/(ASCE)
1084-0680(2008)13:4(175).

[3] D’amato M, Gigliotti R, Laguardia R. Seismic isolation for protecting historical
buildings: A case study. Front Built Environ 2019;5:87. http://dx.doi.org/10.
3389/fbuil.2019.00087.

[4] De la Llera JC, Lüders C, Leigh P, Sady H. Analysis, testing, and imple-
mentation of seismic isolation of buildings in Chile. Earthq Eng Struct Dyn
2004;33(5):543–74. http://dx.doi.org/10.1002/eqe.360.

[5] Fujita T. Demonstration of effectiveness of seismic isolation in the Hanshin-Awaji
earthquake and progress of applications of base-isolated buildings. Technical
report, University of Tokyo; 1995.

[6] De La Llera J, Mitrani-Reiser J, Rivera Jofre F, Fortuño C, Jünemann R, Poulos A,
Vásquez J. The 2010 Chile earthquake: a five year reflection. In: Proceedings of
the 10th pacific conference on earthquake engineering. AEES; 2015, p. 210.

[7] Kelly JM. Earthquake-resistant design with rubber. Springer; 1993.
[8] Fenz DM, Constantinou MC. Behaviour of the double concave friction pendulum

bearing. Earthq Eng Struct Dyn 2006;35(11):1403–24. http://dx.doi.org/10.
1002/eqe.589.

[9] Becker TC, Mahin SA. Experimental and analytical study of the bi-directional
behavior of the triple friction pendulum isolator. Earthq Eng Struct Dyn
2012;41(3):355–73. http://dx.doi.org/10.1002/eqe.1133.

[10] Lee D, Constantinou MC. Quintuple friction pendulum isolator: behavior, mod-
eling, and validation. Earthq Spectra 2016;32(3):1607–26. http://dx.doi.org/10.
1193/040615EQS053M.

[11] Pinochet J, De la Llera JC, Lüders C. Analysis of a kinematic self-centring
seismic isolator. Earthq Eng Struct Dyn 2006;35(12):1533–61. http://dx.doi.org/
10.1002/eqe.601.

[12] Wang B, Zhu S, Casciati F. Experimental study of novel self-centering
seismic base isolators incorporating superelastic shape memory alloys. J
Struct Eng 2020;146(7):04020129. http://dx.doi.org/10.1061/(ASCE)ST.1943-
541X.0002679.

[13] Kumar M, Whittaker AS, Constantinou MC. An advanced numerical model of elas-
tomeric seismic isolation bearings. Earthq Eng Struct Dyn 2014;43(13):1955–74.
http://dx.doi.org/10.1002/eqe.2431.

[14] Markou AA, Manolis GD. Mechanical models for shear behavior in high damping
rubber bearings. Soil Dyn Earthq Eng 2016;90:221–6. http://dx.doi.org/10.1016/
j.soildyn.2016.08.035.

[15] Maureira N, de la Llera J, Oyarzo C, Miranda S. A nonlinear model for
multilayered rubber isolators based on a co-rotational formulation. Eng Struct
2017;131:1–13. http://dx.doi.org/10.1016/j.engstruct.2016.09.055.

[16] Ishii K, Kikuchi M. Improved numerical analysis for ultimate behavior of
elastomeric seismic isolation bearings. Earthq Eng Struct Dyn 2019;48(1):65–77.
http://dx.doi.org/10.1002/eqe.3123.
12
[17] Oliveto ND, Markou AA, Athanasiou A. Modeling of high damping rubber bear-
ings under bidirectional shear loading. Soil Dyn Earthq Eng 2019;118:179–90.
http://dx.doi.org/10.1016/j.soildyn.2018.12.017.

[18] Miranda S, Miranda E, de la Llera JC. A simplified and versatile el-
ement model for elastomeric seismic isolation bearings. Earthq Spectra
2021;87552930211030939. http://dx.doi.org/10.1177/87552930211030939.

[19] Kikuchi M, Aiken ID. An analytical hysteresis model for elastomeric seismic
isolation bearings. Earthq Eng Struct Dyn 1997;26(2):215–31. http://dx.doi.org/
10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9.

[20] Grant DN, Fenves GL, Whittaker AS. Bidirectional modelling of high-damping
rubber bearings. J Earthq Eng 2004;8(spec01):161–85. http://dx.doi.org/10.
1142/S136324690400164X.

[21] Tubaldi E, Ragni L, Dall’Asta A, Ahmadi H, Muhr A. Stress softening behaviour
of HDNR bearings: modelling and influence on the seismic response of isolated
structures. Earthq Eng Struct Dyn 2017;46(12):2033–54. http://dx.doi.org/10.
1002/eqe.2897.

[22] ASCE/SEI7-16. Minimum design loads and associated criteria for buildings and
other structures. American Society of Civil Engineers; 2017, http://dx.doi.org/
10.1061/9780784414248.

[23] Ministero delle infrastrutture e dei trasporti. Norme tecniche per le costruzioni.
Italian Tech Norms Constr 2018. (In Italian).

[24] British Standards Institution. Eurocode 8: Design of structures for earthquake
resistance-part 1: general rules, seismic actions and rules for buildings. Brussels:
Eur Committee Standardization 2005.

[25] Gheryani MH, Razak HA, Jameel M. Dynamic response changes of seismic
isolated building due to material degradation of HDRB. Arab J Sci Eng
2015;40(12):3429–42. http://dx.doi.org/10.1007/s13369-015-1794-7.

[26] Kodakkal A, Saha SK, Sepahvand K, Matsagar VA, Duddeck F, Marburg S. Un-
certainties in dynamic response of buildings with non-linear base-isolators. Eng
Struct 2019;197:109423. http://dx.doi.org/10.1016/j.engstruct.2019.109423.

[27] Cardone D, Perrone G, Piesco V. Developing collapse fragility curves for base-
isolated buildings. Earthq Eng Struct Dyn 2019;48(1):78–102. http://dx.doi.org/
10.1002/eqe.3126.

[28] Flora A, Perrone G, Cardone D. Evaluating collapse fragility curves for existing
buildings retrofitted using seismic isolation. Appl Sci 2020;10(8):2844. http:
//dx.doi.org/10.3390/app10082844.

[29] Miranda S, de la Llera JC, Miranda E. Uncertainty on measurement of elastomeric
isolators effective properties. Measurement 2021;180:109511. http://dx.doi.org/
10.1016/j.measurement.2021.109511.

[30] Mullins L. Softening of rubber by deformation. Rubber Chem Technol
1969;42(1):339–62. http://dx.doi.org/10.5254/1.3539210.

[31] Chen MC, Restrepo JI, Benzoni G. Response of a high damping rubber bearing
to multiaxial excitation. J Test Eval 2019;49(2):1153–72.

[32] Dorfmann A, Burtscher SL. Aspects of cavitation damage in seismic bear-
ings. J Struct Eng 2000;126(5):573–9. http://dx.doi.org/10.1061/(ASCE)0733-
9445(2000)126:5(573).

[33] Gent AN. Engineering with rubber: how to design rubber components. Carl
Hanser Verlag GmbH Co KG; 2012.

[34] Koh CG, Kelly JM. A simple mechanical model for elastomeric bearings used in
base isolation. Int J Mech Sci 1988;30(12):933–43. http://dx.doi.org/10.1016/
0020-7403(88)90075-6.

[35] Ryan KL, Kelly JM, Chopra AK. Nonlinear model for lead–rubber bearings
including axial-load effects. J Eng Mech 2005;131(12):1270–8. http://dx.doi.org/
10.1061/(ASCE)0733-9399(2005)131:12(1270).

[36] Gent AN. Elastic stability of rubber compression springs. J Mech Eng Sci
1964;6(4):318–26.

[37] Holzapfel GA. Nonlinear solid mechanics: a continuum approach for engineering.
John Wiley and Sons; 2000.

[38] Tadmor EB, Miller RE, Elliott RS. Continuum mechanics and thermodynamics:
from fundamental concepts to governing equations. Cambridge University Press;
2012.

[39] Mooney M. A theory of large elastic deformation. J Appl Phys 1940;11(9):582–
92.

[40] Rivlin R. A note on the torsion of an incompressible highly-elastic cylinder.
In: Mathematical proceedings of the cambridge philosophical society, vol. 45.
Cambridge University Press; 1949, p. 485–7.

[41] Karavasilis TL, Kerawala S, Hale E. Hysteretic model for steel energy dissipation
devices and evaluation of a minimal-damage seismic design approach for steel
buildings. J Construct Steel Res 2012;70:358–67. http://dx.doi.org/10.1016/j.
jcsr.2011.10.010.

[42] Hansen N, Ostermeier A. Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 2001;9(2):159–95. http://dx.doi.org/10.
1162/106365601750190398.

[43] Hansen N. The CMA evolution strategy: A tutorial. 2016, http://dx.doi.org/10.

48550/arXiv.1604.00772, arXiv preprint arXiv:1604.00772.

http://dx.doi.org/10.1061/(ASCE)0733-9445(1996)122:3(298)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1996)122:3(298)
http://dx.doi.org/10.1061/(ASCE)0733-9445(1996)122:3(298)
http://dx.doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175)
http://dx.doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175)
http://dx.doi.org/10.1061/(ASCE)1084-0680(2008)13:4(175)
http://dx.doi.org/10.3389/fbuil.2019.00087
http://dx.doi.org/10.3389/fbuil.2019.00087
http://dx.doi.org/10.3389/fbuil.2019.00087
http://dx.doi.org/10.1002/eqe.360
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb5
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb5
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb5
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb5
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb5
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb6
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb6
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb6
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb6
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb6
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb7
http://dx.doi.org/10.1002/eqe.589
http://dx.doi.org/10.1002/eqe.589
http://dx.doi.org/10.1002/eqe.589
http://dx.doi.org/10.1002/eqe.1133
http://dx.doi.org/10.1193/040615EQS053M
http://dx.doi.org/10.1193/040615EQS053M
http://dx.doi.org/10.1193/040615EQS053M
http://dx.doi.org/10.1002/eqe.601
http://dx.doi.org/10.1002/eqe.601
http://dx.doi.org/10.1002/eqe.601
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002679
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002679
http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0002679
http://dx.doi.org/10.1002/eqe.2431
http://dx.doi.org/10.1016/j.soildyn.2016.08.035
http://dx.doi.org/10.1016/j.soildyn.2016.08.035
http://dx.doi.org/10.1016/j.soildyn.2016.08.035
http://dx.doi.org/10.1016/j.engstruct.2016.09.055
http://dx.doi.org/10.1002/eqe.3123
http://dx.doi.org/10.1016/j.soildyn.2018.12.017
http://dx.doi.org/10.1177/87552930211030939
http://dx.doi.org/10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9
http://dx.doi.org/10.1002/(SICI)1096-9845(199702)26:2<215::AID-EQE640>3.0.CO;2-9
http://dx.doi.org/10.1142/S136324690400164X
http://dx.doi.org/10.1142/S136324690400164X
http://dx.doi.org/10.1142/S136324690400164X
http://dx.doi.org/10.1002/eqe.2897
http://dx.doi.org/10.1002/eqe.2897
http://dx.doi.org/10.1002/eqe.2897
http://dx.doi.org/10.1061/9780784414248
http://dx.doi.org/10.1061/9780784414248
http://dx.doi.org/10.1061/9780784414248
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb23
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb23
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb23
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb24
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb24
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb24
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb24
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb24
http://dx.doi.org/10.1007/s13369-015-1794-7
http://dx.doi.org/10.1016/j.engstruct.2019.109423
http://dx.doi.org/10.1002/eqe.3126
http://dx.doi.org/10.1002/eqe.3126
http://dx.doi.org/10.1002/eqe.3126
http://dx.doi.org/10.3390/app10082844
http://dx.doi.org/10.3390/app10082844
http://dx.doi.org/10.3390/app10082844
http://dx.doi.org/10.1016/j.measurement.2021.109511
http://dx.doi.org/10.1016/j.measurement.2021.109511
http://dx.doi.org/10.1016/j.measurement.2021.109511
http://dx.doi.org/10.5254/1.3539210
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb31
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb31
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb31
http://dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:5(573)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:5(573)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2000)126:5(573)
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb33
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb33
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb33
http://dx.doi.org/10.1016/0020-7403(88)90075-6
http://dx.doi.org/10.1016/0020-7403(88)90075-6
http://dx.doi.org/10.1016/0020-7403(88)90075-6
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1270)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1270)
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:12(1270)
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb36
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb36
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb36
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb37
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb37
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb37
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb38
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb38
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb38
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb38
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb38
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb39
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb39
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb39
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb40
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb40
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb40
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb40
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb40
http://dx.doi.org/10.1016/j.jcsr.2011.10.010
http://dx.doi.org/10.1016/j.jcsr.2011.10.010
http://dx.doi.org/10.1016/j.jcsr.2011.10.010
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.48550/arXiv.1604.00772
http://dx.doi.org/10.48550/arXiv.1604.00772
http://dx.doi.org/10.48550/arXiv.1604.00772
http://arxiv.org/abs/1604.00772


Engineering Structures 289 (2023) 116234J.A. Gallardo et al.
[44] Athanasiou A, De Felice M, Oliveto G, Oliveto PS. Evolutionary algorithms for
the identification of structural systems in earthquake engineering. In: IJCCI
(ECTA-FCTA). 2011, p. 52–62.

[45] Athanasiou A, Felice MD, Oliveto G, Oliveto PS. Dynamical modeling and
parameter identification of seismic isolation systems by evolution strategies. In:
Computational intelligence. Springer; 2013, p. 101–18.
13
[46] Friedman J, Hastie T, Tibshirani R, et al. The elements of statistical learning,
vol. 1. Springer series in statistics New York; 2001.

[47] RCore Team. R: A language and environment for statistical computing. 2020,
URL www.R-project.org/.

[48] Miller A. Subset selection in regression. CRC Press; 2002.

http://refhub.elsevier.com/S0141-0296(23)00649-1/sb44
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb44
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb44
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb44
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb44
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb45
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb45
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb45
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb45
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb45
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb46
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb46
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb46
http://www.R-project.org/
http://refhub.elsevier.com/S0141-0296(23)00649-1/sb48

	A numerical model for non-linear shear behavior of high damping rubber bearings
	Introduction
	Phenomenological behavior of a HDRB
	Mathematical formulation
	Hyperelastic component
	Dissipative component
	Stiffness degradation
	Scragging effect
	Mullins effect


	Prediction model for the parameter values
	Base expansion
	Optional prediction models
	Selection of the prediction model

	Validation of the proposed model and results
	Global results
	Comparison with other numerical models
	Overall results of the prediction model

	Numerical implementation
	Summary and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


