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Abstract: To  assess  the  probabilistic  seismic  risk  and  resilience  of  an  engineering  system,  the  usual
workflow considers the development of stochastically consistent seismic hazard scenarios, the estimation of
earthquake  demand  on  the  structural  and  non-structural  components,  the  evaluation  of  the  operative
performance of the affected system, and the final aggregation of outcome variables, say into exceedance
probabilities or cost statistics. However, simulating large-scale, highly-detailed engineering systems, such as
cities or  large networks,  may require  considerable computational  resources and time,  especially  as the
number of evaluated earthquake scenarios increases in Monte Carlo simulations. This work proposes a new
strategy to develop surrogate models for networked infrastructure systems using dimensionality reduction
and random forests. The input to the surrogate model consists in the downtime of each element of the
network,  which  is  generally  cheap  to  sample  in  case  of  earthquakes,  for  this  requires  evaluating  the
corresponding fragility curves and recovery times of the elements. The output consists in a loss measure
(scalar or vector) that represents the behavior of the entire system. The surrogate model, then, reproduces
the performance of the system to the affectation of its elements, which is typically the computationally most
expensive  task  in  simulating  the  system,  because  it  often  requires  solving  an  optimization  problem or
reaching an equilibrium. Herein, the strategy proposed to generate the surrogate model roughly comprises
two parts. First, it requires identifying structurally similar elements in the network, to later infer a reduced
dimensionality input. And, second, it proposes projecting the input of downtimes to this lower dimensional
representation  and  training  a  machine  learning  model  to  predict  the  loss  measure.  Results  of  this
methodology are demonstrated using a practical application, by crafting a surrogate model of the electric
power generation and transmission network in Chile, which has been thoroughly modeled using physics-
based models and power flow equations. The surrogate model built following the proposed methodology was
able to reduce the dimensionality of the problem from 1494 to merely 32 dimensions. The prediction errors
were assessed and the predictions of the crafted surrogate model were unbiased.
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1 Introduction
To assess  the  probabilistic  seismic  risk  and  resilience  of  engineering  systems,  such  as  electric  power
network, public transportation and healthcare networks, the usual simulation workflow considers the following
steps (Cardona et al, 2008; Marulanda et al, 2020; Liu et al, 2021; Silva-Lopez et al, 2022): (i) probabilistic
sampling of consistent seismic hazard scenarios, (ii) the estimation of seismic loads on structural and non-
structural components, (iii) the evaluation of the operative performance of the affected system, and (iv) the
aggregation  of  outcome variables,  such  as  exceedance  probabilities,  cost  statistics,  indicators  and  the
identification of components-at-risk.

However, assessing the probabilistic seismic risk of a large-scale, highly-detailed engineering system, such
as a city or a large network, may require prohibitive computational time and resources. This occurs because
estimating the operational performance of the system (step (iii) above) consumes considerable time on each
iteration. This situation worsens as the number of evaluated earthquake scenarios (step (i) above) increases
in Monte Carlo simulations. In such case, reducing the computational time and resources needed to estimate
the operational behavior of the system becomes desirable.

This work focuses in situation of large-scale networked infrastructure systems, these that comprise hundreds
or  more  elements  and  span  large  areas.  Such  systems  include  urban  drinking  water  networks,  urban
transportation networks,  urban power distribution networks,  urban telephony networks,  regional  highway
networks, regional power transmission networks, etcetera. Of course, in the modeling of such systems, the
number of elements considered depend on the level of abstraction suitable for the intended application, but
this work focuses in systems comprising a considerable amount of elements.

The analysis of large-scale systems comes with the risk of falling under a curse of dimensionality, which is
an  umbrella  term for  a  variety  of  problems  arising  when dealing  with  high  dimensionality  (Altman and
Krzywinski, 2018; Chen et al, 2015; Kuo and Sloan, 2005; Wang, 2021). One type of curse of dimensionality
occurs when systems comprise many elements and their computation, namely simulation, optimization or
equilibrium finding, takes disproportionally (super-linearly, even exponentially) more time to solve (Bellman,
1961; Chen et al, 2015; Pereira and Pinto, 1991; Wang, 2021). This occurs because the description space
(solution  space  or  search  space)  of  the  problem  grows  exponentially  with  the  number  of  dimensions
(parameters, elements, details) considered.

Another type of curse of dimensionality affects learning (statistical and machine learning) models. Having too
many dimensions (parameters) induces sparsity in the data (Altman and Krzywinski, 2018), models might fit
the data too well and lack prediction power, a problem which is known as overfitting (Hawkins, 2004; Ying,
2019).  Typical  solutions  to  the  problem  of  overfitting  make  use  of  dimensionality  reduction,  data
augmentation  and  regularization  (Ying,  2019).  Another  effective  strategy  includes  using  ensembles  of
models, where the consensus of possibly overfit models cancel each other estimation errors (Sollich and
Krogh, 1995; Dietterich, 2002; Hastie et al, 2009).

Note that  yet  another  type of  curse of  dimensionality  stems from error  or  uncertainty  propagation.  The
specification of large-scale systems requires specifying several parameters, all of which may be subjected to
an estimation error,  and which will  be manipulated (say,  through mathematical  formulas)  during system
optimization or simulation, causing the propagation and enhancement of errors (Benke et al 2018). This work
is not concerned with this problem, however.

This work is concerned with first two types of curse of dimensionality described. The objective is to bypass
the first type, which is about computational complexity (runtime and computational resources). This is a
typical use for surrogate models. However, the second type might affect the quality of the surrogate model
crafted. In this sense, this work proposes using the network and spatial layout of the system components to
inform a dimensionality reduction of the input space, using principal components (Jolliffe and Cadima, 2016),
as well as the ensemble learning method of random forests (Breiman, 2001). Both techniques have been
widely used in the development of surrogate models (Jun et al, 2020; Hou and Behdinan, 2022; Liu et al,
2021; Dasari et al, 2019; Hariri-Ardebili et al, 2021; Zheng et al, 2019).

The methodology introduced in this work is demonstrated through the development of a surrogate model for
the electric power generation and transmission network in Chile, which supplies with electricity most of the
territory. The network considered comprises 1494 nodes (substations and power plants), which were the
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elements at risk, and 1195 edges (power lines), which represents its 2019 snapshot. The system model has
been characterized in its entirety, both physically and operationally (Ferrario et al, 2019; Ferrario et al, 2020).

Following the proposed methodology, the surrogate model is built using the spatial and network distribution
of the network elements (generating plants, substations and lines) and its simulated performance on 20000
seismic  scenarios,  sampled  using  importance  sampling  and  following  realistic  recurrence  relations  for
Chilean subduction seismicity (Poulos et al, 2019). The resulting surrogate model takes a vector having the
downtime  in  hours  of  each  node  of  the  network,  which  has  1494  dimensions,  and  reduces  it  to  32
dimensions, to then estimate the loss measure, which was chosen to be the energy not supplied to the
Greater Valparaíso conurbation. The quality of the surrogate model is measured and validated through its
cross-validation prediction error.

2 Proposed methodology
The general objective of this methodology is to guide the crafting of surrogate models using information
about the layout of the engineering system under consideration, namely, the location and interconnections of
its components, and a performance dataset for the system, in which each sample datum consists in the
damage or disruption level of each component of interest and the loss outcome of the system.

2.1 Proposed guide
In particular, the methodology consists in the following steps:

1. Devise a similarity matrix for the components of the system. The idea here is that this similarity
matrix  may  help  identify  functionally  equivalent  components.  The  components  that  must  be
considered in the matrix are the elements-at-risk only. The similarity between two components may
be defined according to the available data. For specific cases:

1. If the components have known spatial locations, the similarity measure may consider that closer
elements are more similar than distant ones. For instance, if  d (u ,v ) is the Euclidean distance
between components u and v, a similarity measure such as exp(−αd2 (u,v )) may be used.

2. If  the components belong in a network,  the similarity  measure may evaluate their  structural
equivalence or similarity (Lorrain et al, 1971; Audenaert et al, 2018). If the set of neighbors of
node  n  is denoted by  Γ(n), then  Jaccard's score,  J(u ,v )=(Γ(u)∩Γ(v ))/(Γ(u)∪Γ(v )), may be
used as similarity measure. This score may be improved if a less strict node similarity measure
is used.

3. If data about the behaviour or performance of components u, v are available, then the correlation
may be used as similarity measure.

4. If similarity measures measuring different aspects are available, e.g., spatial proximity and node
similarity, then the measures may be combined.

2. Compute the top eigenvectors of the matrix. This step is essentially principal components analysis
(Fan et al, 2014). The eigenvectors may be ranked by their eigenvalues (the greater, the better) or
by their relation to an area or element of interest (this requires looking at specific components within
the vectors obtained).

3. Simulate a number of scenarios using the original, detailed system model, and estimate the loss for
each scenario. The number of scenarios to consider may depend on the amount of data needed for
statistical fitting, the probability of generating damaging events, and the resources available. The
loss measures (may just be one measure, i.e., a scalar) should depend on the intended use for the
model. In the generated dataset, each entry should consist in the damage or disruption level of each
component of interest of the system (e.g., the downtime of each element) and the loss measures
obtained.

4. Generate a low dimensionality performance dataset. This must be done by projecting each vector of
damage or disruption levels on the eigenvectors obtained (a simple dot product), plus the summation
of all the components of the vector. Each entry should retain, however, the loss measures.
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5. Train a random forest model on the low dimensionality dataset previously generated. This random
forest model will estimate the expected loss measures given a vector of damage or disruption levels.

6. Estimate the error model of the model by performing cross-validation. Cross-validation is a technique
for assessing the prediction error of a model by repeatedly splitting the dataset into training and
testing sets, and each time fitting the model in the training set to test it on the testing set (Browne,
2000; Hawkins et al, 2010). For simplicity, 10-fold cross-validation may be used. Then, by pooling
the prediction errors of the random forest models, it is possible to assess, for each loss measure,
whether its error is additive, multiplicative or affine, and what is the magnitude of this error.

2.2 How to use the crafted surrogate model
To evaluate the system performance using the surrogate model, the following steps may be followed:

1. From the seismic event, estimate the seismic loads (intensity measure) on each component-at-risk
of the system.

2. From the seismic loads, estimate the damage or disruption level of the components-at-risk of the
system. This has to be in the same units used to train the surrogate model. For example, it could be
downtime in hours or an index for damage level (0 for no damage, then 1, 2, 3, etc., for additional
severity levels).

3. Generate a low dimensional representation of the previous step. This is done by applying the dot
product between the damage or disruption level vector and the eigenvectors, plus the additional
dimension that results from summing all the components in the vector.

4. Estimate the expected loss measures using the random forest model trained on the entire original
low dimensional dataset.

5. Use the error model defined previously to generate a random loss vector using the expected loss
measures and the error model, or provide confidence bounds for the expected loss vector.

3 Electric power network
As a practical application of the methodology previously introduced, a surrogate model of the electric power
network of Chile is developed following the methodology. This section describes the system model used and
the dataset built using its performance on a sample of seismic scenarios.

3.1 Description of the model
The  electric  power  network  of  Chile,  called  Sistema  Eléctrico  Nacional (National  Electric  System)  and
abbreviated  SEN,  supplies  with  electricity  most  of  the country  and even  sells  electricity  to  neighboring
country of Argentina. The SEN spans about 3100 km in length from North to South, serves about 98% of the
population of Chile and was formed by merging the previous Greater North and Central-Southern electric
systems (Coordinador Eléctrico Nacional, 2021).

The model of the SEN considered in this work consists in its 2019 snapshot (Ferrario et al, 2019; Ferrario et
al, 2020). This is a network model comprising 1494 nodes and 1195 links. The 1494 nodes are the elements
at seismic risk, and consists in 994 substations and 500 power generation plants. The power plants are of
various kinds, ranging from hydroelectric to wind generation. Fig. 1 illustrates the spatial distribution and
network layout of the 2019 SEN.

Figure 1. The electric power network of Chile (SEN).
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Note that Fig. 1 also illustrates the administrative division of the covered area of the country in 2019. The
map leaves out the southernmost part of Chile, because it is not supplied by the SEN. The line crossing the
eastern border,  which is  on  the Andes mountain  range,  supplies  a  northern  location in  Argentina  with
electricity.

The system model is implemented as a mathematical optimization model, by which the system tries to satisfy
the demand using the least cost to do so. This is done by solving a direct current, optimal power flow (DC-
OPF) model (Ferrario et al, 2019; Ferrario et al, 2020). The objective function, to minimize, considers the
generation cost and load shedding. The constraints ensure the flow conservation at each node and model
the energy loss due to line electrical resistance. Additional constraints involve capacity, such as line capacity,
generation capacity and client consumption capacity, which must not be exceeded.

In addition to the above, the hourly demand during year 2019 has also been collected.

3.2 Seismic scenarios considered
The system model was evaluated on a set of 20000 seismic scenarios which were sampled following the
earthquake recurrence relations of Poulos et al (2019). These recurrence relations indicate the probability of
mainshocks originating from the subduction mechanism between the oceanic and continental plates. The
relations  indicate  event  frequencies  for  7  zones  (3  coastal  and  4  inland)  and  according  to  moment
magnitudes (Mw) above 5.0, following the Gutenberg-Richter relation (Gutenberg and Richter, 1944).

The 20000 scenarios were sampled following the aforementioned recurrence relations. However, earthquake
magnitudes were sampled uniformly between magnitudes Mw 5.0 and Mw 9.6, in other words, following an
importance  sampling  scheme.  This  was  done  because  it  was  necessary  to  sample  higher  magnitude
mainshocks, which in practice are much less frequent than lower magnitude ones, since the performance of
the electric power network is unaffected by events except for these of higher magnitude (M w > 8), in which
the disruption and performance degradation may be massive. This configures what is often referred to as an
extreme, rare events situation (Broska et al, 2020; Glette-Iversen and Aven, 2021).

For each scenario, the seismic load on each node was evaluated (following the use of a GMPE). From the
application of the fragility curves of each node, its damage state and downtime were estimated. Then, by
assigning a random hour of occurrence in 2019, the power flow optimization problem was solved to check if
the system could meet the demand. The chosen loss measure was the energy not supplied (ENS) to the
Greater Valparaíso conurbation.

Fig. 2 shows the ENS to the Greater Valparaíso conurbation for the 20000 seismic scenarios considered. As
the plot shows, most of the losses are concentrated in earthquakes with magnitudes Mw > 8.0. Overall, only
3307 (16.5%) of the scenarios had any losses associated. Also, note that for magnitudes Mw > 9.3 there is a
reduction of damaging scenarios, which is caused by the spatial distribution of the most damaging scenarios
(which are dominated by events far from the Valparaíso region).

Figure 2. ENS to the Greater Valparaíso conurbation by scenario.
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4 Application and results
4.1 Development of the surrogate model 
The first step of the methodology consists in defining a similarity matrix for the elements-at-risk, which are
the 1494 nodes in this case. Since each node has a spatial location as well as a position in the network, the
similarity measure used combined both.

For the spatial location, the similarity measure chosen was

Sdist(u ,v )=exp(−d (u ,v )2

4712 ), (1)

where d(u,v) is the Euclidean distance in kilometers between elements u and v.

For the network position, the similarity measure chosen was

Snetw(u,v )=
Γ(u)∩Γ(v )
Γ(u)∪Γ(v )

, (2)

in other words, by Jaccard's similarity.

Finally, the combined similarity was defined as

S (u,v )=1−(1−Sdist(u,v ))(1−Snetw(u ,v )). (3)

The reasoning behind Eq. (3) is that if two nodes are extremely close or structurally equivalent in terms of
network position, then the nodes should be consider to fulfil  practically the exact same role and, hence,
should be considered perfectly similar.

Using the similarity measure  S, a similarity matrix of dimensions 1494×1494 was defined and its eigen-
decomposition was calculated. It turned out that only 40 eigenvectors with non zero eigenvalues were found.
Moreover, the first 10 explained 98.5% of the 1494 dimensions. Still, the first 31 eigenvectors were used,
which where the only associated with eigenvalues of 0.1 or more (this was the cut criterion used).

Following the 31 eigenvectors chosen and an additional vector of 1s (to sum all the damage or disruption
levels in the affectation vector), the dataset with the system performance on the 20000 was reduced from
having 1494+1 columns (1494 elements-at-risk plus the loss measure ENS) to a dataset of 32+1 columns.
The random forest model was trained on this reduced dataset.

4.2 Prediction error
The next step in the proposed methodology consists in assessing the prediction error and defining an error
model for the random forest predictions. Thus, a 10-fold cross-validation procedure was performed. In each
iteration, a random forest model was fitted on the training set and its predictions were tested on the testing
set. The pooled predicted and actual ENS in the 10 testing sets are shown in Fig. 3.

Figure 3. Prediction results of 10-fold cross validation.
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The results suggest that the error model should be multiplicative instead of additive or affine. In fact, it is
suggested  that  the  predictions  of  the  random forest  model  should  be  multiplied  by  a  random number
generated following a normal distribution with mean 1 and standard deviation of 2.91.

The plot shown in Fig. 3 also suggests that the predictions by the random forest model are unbiased. To
assess this, all the surrogate model predictions were sorted by their predicted ENS, they were partitioned in
250 contiguous bins, and then, for each bin, the actual (true) ENS were averaged. The result was the red line
in  Fig. 3,  which,  as shown,  closely  follows the diagonal  line.  In  other  words,  the model  predictions are
unbiased.

Note that the random forest models were configured to consist of 150 random regression trees inside (which
are like decision trees, but whose leaves have linear regression functions) with depth of 5 levels. These
settings were hand-chosen to yield a decent performance, but were not chosen automatically, so they are
unlikely to be optimal.

5 Conclusions
Assessing the probabilistic seismic risk of a large-scale, highly-detailed engineering system, such as city or
region-wide infrastructure network,  may require  prohibitive  computational  time and resources.  This  cost
comes from estimating the operational performance of the system under each seismic scenario. Therefore,
to reduce the overall computational time needed to carry the probabilistic seismic risk assessment of the
system, a surrogate model of the system may be used instead.

This work introduced a methodology to develop surrogate models that take as input the downtimes of the
elements of the system and predict the overall operative loss in the performance of the system, according to
a pre-specified loss measure.

The methodology proposes crafting surrogate models using dimensionality reduction and machine learning.
The dimensionality reduction step takes into account the spatial distribution and network topology of the
system, to identify which elements of the input can be combined using principal components analysis, to
yield a low dimensionality projection of the downtimes. The machine learning step consists in training a
random forest model to learn the association between the low dimensional input and the loss measure, as
well as to learn the prediction error. The resulting surrogate models are expected to be robust against the
curse of dimensionality.

As a practical application, a surrogate model for the electric power network of Chile was developed following
the proposed methodology. The system model comprises 1494 nodes (substations and power plants), which
were the elements at risk, and 1195 edges (power lines). Through the application of the methodology, the
surrogate model takes a vector having the downtime in hours of each node of the network, totalling 1494
components, and reduces it to 32 dimensions, to then estimate the loss measure, which was chosen to be
the energy not supplied to the Greater Valparaíso conurbation. Cross-validation error estimation validated
the quality of the surrogate model developed following the proposed methodology.

6 Acknowledgements
This work has been sponsored by the Chilean government through the Research Center  for  Integrated
Disaster  Risk  Management  (CIGIDEN),  ANID/FONDAP/1523A0009,  and  the  research project  Multiscale
earthquake risk mitigation of healthcare networks using seismic isolation, ANID/FONDECYT/1220292.

7 References
Altman N., Krzywinski M. (2018). The curse(s) of dimensionality. Nature Methods, 15(6):399-400.
Audenaert  P.,  Colle D., Pickavet M. (2018).  Regular equivalence for social  networks.  Applied Sciences,

9(1):117.
Bellman R. (1961). Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton.
Benke K.K.,  Norng S.,  Robinson N.J.,  Benke L.R.,  Peterson T.J.  (2018).  Error  propagation in computer

models:  analytic  approaches,  advantages,  disadvantages and constraints.  Stochastic  Environmental
Research and Risk Assessment, 32:2971-85.

7



WCEE2024 Monsalve et al.

Breiman L. (2001). Random forests. Machine learning, 45:5-32.
Broska L.H., Poganietz W.R., Vögele S. (2020). Extreme events defined—A conceptual discussion applying

a complex systems approach. Futures, 115:102490.
Browne M.W. (2000). Cross-validation methods. Journal of mathematical psychology 44(1):108-32.
Cardona O.D., Ordaz M.G., Yamín L., Arámbula S., Marulanda M.C., Barbat A. (2008). Probabilistic seismic

risk assessment for comprehensive risk management: modeling for innovative risk transfer and loss
financing mechanisms. Proceedings ot The 14th World Conference on Earthquake Engineering.

Chen S., Montgomery J., Bolufé-Röhler A. (2015). Measuring the curse of dimensionality and its effects on
particle swarm optimization and differential evolution. Applied Intelligence, 42:514-26.

Coordinador  Eléctrico  Nacional  (2021).  Sistema  Eléctrico  Nacional  (SEN).  Website  of  the  Coordinador
Eléctrico Nacional, https://www.coordinador.cl/sistema-electrico/ (retrieved October 31, 2023).

Dasari S.K., Cheddad A., Andersson, P. (2019). Random forest surrogate models to support design space
exploration in aerospace use-case.  Proceeding of  the 15th IFIP WG 12.5 International  Conference,
Artificial  Intelligence  Applications  and  Innovations  2019,  Hersonissos,  Crete,  Greece.  Springer
International Publishing.

Dietterich T.G. (2002). Ensemble learning. The handbook of brain theory and neural networks, 2(1):110-25.
Fan Z., Xu Y., Zuo W., Yang J., Tang J., Lai Z., Zhang D. (2014). Modified principal component analysis: An

integration of multiple similarity subspace models.  IEEE transactions on neural networks and learning
systems, 25(8):1538-52.

Ferrario E., Poulos A., de la Llera J.C., Lorca A., Oneto A., Magnere C. (2019). Representation and modeling
of the chilean electric power network for seismic resilience analysis. Proceedings of the 29th European
Safety and Reliability Conference (ESREL). Research Publishing Services.

Ferrario  E.,  Monsalve  M.,  Poulos  A.,  de  la  Llera  J.C.,  Sansavini  G.  (2020).  Estimating  the  impact  of
earthquake-induced power outages on different economic sectors in Chile.  Proceedings of  the 30th
European Safety and Reliability Conference (ESREL) and the 15th Probabilistic Safety Assessment and
Management Conference (PSAM) 2020. Research Publishing Services.

Glette-Iversen I., Aven T. (2021). On the meaning of and relationship between dragon-kings, black swans
and related concepts. Reliability Engineering & System Safety, 211:107625.

Gutenberg B., Richter C.F. (1944). Frequency of earthquakes in California.  Bulletin of the Seismological
society of America, 34(4):185-8.

Hariri-Ardebili  M.A.,  Mahdavi  G.,  Abdollahi  A.,  Amini  A.  (2021).  An RF-PCE hybrid  surrogate model  for
sensitivity analysis of dams. Water, 13(3):302.

Hastie T., Tibshirani R., Friedman J. (2009). Ensemble learning.  The elements of statistical learning: data
mining, inference, and prediction, 605-24.

Jolliffe  I.T.,  Cadima  J.  (2016).  Principal  component  analysis:  a  review  and  recent  developments.
Philosophical transactions of the royal society A:  Mathematical,  Physical  and Engineering Sciences,
374(2065):20150202.

Hawkins D.M. (2004). The problem of overfitting.  Journal of chemical information and computer sciences,
44(1):1-2.

Hawkins D.M., Basak S.C., Mills D. (2003). Assessing model fit by cross-validation.  Journal of chemical
information and computer sciences, 43(2):579-86.

Hou C.K., Behdinan K. (2022). Dimensionality Reduction in Surrogate Modeling: A Review of Combined
Methods. Data Science and Engineering, 7(4):402-27.

Jun T.A., Gang S.U., Liqiang G.U., Xinyu W.A. (2020). Application of a PCA-DBN-based surrogate model to
robust aerodynamic design optimization. Chinese Journal of Aeronautics, 33(6):1573-88.

Kuo F.Y., Sloan I.H. (2005). Lifting the curse of dimensionality. Notices of the AMS, 52(11):1320-8.
Liu Y., Li L., Zhao S., Song S. (2021). A global surrogate model technique based on principal component

analysis and Kriging for uncertainty propagation of dynamic systems. Reliability Engineering & System
Safety, 207:107365.

8



WCEE2024 Monsalve et al.

Liu Y, Wotherspoon L, Nair NK, Blake D. (2021). Quantifying the seismic risk for electric power distribution
systems. Structure and Infrastructure Engineering, 17(2):217-32.

Lorrain  F,  White  HC.  (1971).  Structural  equivalence  of  individuals  in  social  networks.  The  Journal  of
mathematical sociology, 1(1):49-80.

Marulanda M.C., de la Llera J.C., Bernal G.A., Cardona O.D. (2021). Uncertainty Range in Probabilistic
Seismic Risk Metrics Resulting from Multiple Hazard Models. Natural Hazards, 2021.

Pereira M.V., Pinto L.M. (1991). Multi-stage stochastic optimization applied to energy planning. Mathematical
programming, 52:359-75.

Poulos A., Monsalve M.,  Zamora N., de la Llera J.C. (2019). An updated recurrence model for Chilean
subduction  seismicity  and  statistical  validation  of  its  Poisson  nature.  Bulletin  of  the  Seismological
Society of America, 109(1):66-74.

Silva-Lopez  R.,  Bhattacharjee  G.,  Poulos  A.,  Baker  J.W.  (2022).  Commuter  welfare-based probabilistic
seismic  risk  assessment  of  regional  road  networks.  Reliability  Engineering  &  System  Safety,
227:108730.

Sollich P., Krogh A. (1995). Learning with ensembles: How overfitting can be useful.  Advances in neural
information processing systems, 8.

Wang Q. (2021). Knowledge-based approach for dimensionality reduction solving repetitive combinatorial
optimization problems. Expert Systems with Applications, 184:115502.

Ying X. (2019). An overview of overfitting and its solutions. In Journal of physics: Conference series, 1168:
022022. IOP Publishing.

Zheng Y., Fu X., Xuan Y. (2019). Data-driven optimization based on random forest surrogate. Proceeding of
the 2019 6th international conference on systems and informatics (ICSAI), pp. 487-491. IEEE.

9


